Chronic neuropathic pain: mechanisms, drug targets and measurement
Corresponding Author
Nanna B. Finnerup
Department of Neurology, Danish Pain Research Center, Aarhus University Hospital, DK-8000 Aarhus, Denmark
*Correspondence and reprints: [email protected]Search for more papers by this authorSøren H. Sindrup
Department of Neurology, Odense University Hospital, DK-5000 Odense, Denmark
Search for more papers by this authorTroels S. Jensen
Department of Neurology, Danish Pain Research Center, Aarhus University Hospital, DK-8000 Aarhus, Denmark
Search for more papers by this authorCorresponding Author
Nanna B. Finnerup
Department of Neurology, Danish Pain Research Center, Aarhus University Hospital, DK-8000 Aarhus, Denmark
*Correspondence and reprints: [email protected]Search for more papers by this authorSøren H. Sindrup
Department of Neurology, Odense University Hospital, DK-5000 Odense, Denmark
Search for more papers by this authorTroels S. Jensen
Department of Neurology, Danish Pain Research Center, Aarhus University Hospital, DK-8000 Aarhus, Denmark
Search for more papers by this authorAbstract
Neuropathic pain is common in many diseases or injuries of the peripheral or central nervous system, and has a substantial impact on quality of life and mood. Lesions of the nervous system may lead to potentially irreversible changes and imbalance between excitatory and inhibitory systems. Preclinical research provides several promising targets for treatment such as sodium and calcium channels, glutamate receptors, monoamines and neurotrophic factors; however, treatment is often insufficient. A mechanism-based treatment approach is suggested to improve treatment. Valid and reliable tools to assess various symptoms and signs in neuropathic pain and knowledge of drug mechanisms are prerequisites for pursuing this approach. The present review summarizes mechanisms of neuropathic pain, targets of currently used drugs, and measures used in neuropathic pain trials.
References
- 1 Ohara P.T., Vit J.P., Jasmin L. Cortical modulation of pain. Cell Mol. Life Sci. (2005) 62 44–52.
- 2 Tracey I. Nociceptive processing in the human brain. Curr. Opin. Neurobiol. (2005) 15 478–487.
- 3 Suzuki R., Rygh L.J., Dickenson A.H. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol. Sci. (2004) 25 613–617.
- 4 Porreca F., Ossipov M.H., Gebhart G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. (2002) 25 319–325.
- 5 Suzuki R., Morcuende S., Webber M., Hunt S.P., Dickenson A.H. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat. Neurosci. (2002) 5 1319–1326.
- 6 Scholz J., Woolf C.J. Can we conquer pain? Nat. Neurosci. (2002) 5(Suppl.) 1062–1067.
- 7 Kehlet H., Jensen T.S., Woolf C.J. Persistent postsurgical pain: risk factors and prevention. Lancet (2006) 367 1618–1625.
- 8 Besson J.M. The neurobiology of pain. Lancet (1999) 353 1610–1615.
- 9 Julius D., Basbaum A.I. Molecular mechanisms of nociception. Nature (2001) 413 203–210.
- 10 Waxman S.G., Cummins T.R., Dib-Hajj S.D., Black J.A. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. J. Rehabil. Res. Dev. (2000) 37 517–528.
- 11 Luo Z.D., Chaplan S.R., Higuera E.S. et al. Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J. Neurosci. (2001) 21 1868–1875.
- 12 Wood J.N., Abrahamsen B., Baker M.D. et al. Ion channel activities implicated in pathological pain. Novartis Found. Symp. (2004) 261 32–40.
- 13 McMahon S.B., Cafferty W.B., Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp. Neurol. (2005) 192 444–462.
- 14 Dubner R. Pain and hyperalgesia following tissue injury: new mechanisms and new treatments. Pain (1991) 44 213–214.
- 15 Hunt S.P., Mantyh P.W. The molecular dynamics of pain control. Nat. Rev. Neurosci. (2001) 2 83–91.
- 16 Treede R.D., Meyer R.A., Raja S.N., Campbell J.N. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog. Neurobiol. (1992) 38 397–421.
- 17 Coderre T.J., Katz J., Vaccarino A.L., Melzack R. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain (1993) 52 259–285.
- 18 Woolf C.J., Salter M.W. Neuronal plasticity: increasing the gain in pain. Science (2000) 288 1765–1769.
- 19 Woolf C.J., Thompson S.W. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain (1991) 44 293–299.
- 20 Hains B.C., Saab C.Y., Klein J.P., Craner M.J., Waxman S.G. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J. Neurosci. (2004) 24 4832–4839.
- 21 Noguchi K. Central sensitization following nerve injury, in: F. Cervero, T.S Jensen. (Eds), Handbook of clinical neurology; Pain, Elsevier, Amsterdam, 2006, pp. 277–291.
- 22 Opree A., Kress M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J. Neurosci. (2000) 20 6289–6293.
- 23 Ji R.R., Woolf C.J. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol. Dis. (2001) 8 1–10.
- 24 Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol. Ther. (2006) 109 210–226.
- 25 Watkins L.R., Milligan E.D., Maier S.F. Spinal cord glia: new players in pain. Pain (2001) 93 201–205.
- 26 Scholz J., Broom D.C., Youn D.H. et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J. Neurosci. (2005) 25 7317–7323.
- 27 Pertovaara A., Kontinen V.K., Kalso E.A. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Exp. Neurol. (1997) 147 428–436.
- 28 Suzuki R., Rahman W., Rygh L.J., Webber M., Hunt S.P., Dickenson A.H. Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain (2005) 117 292–303.
- 29 Flor H. Cortical reorganisation and chronic pain: implications for rehabilitation. J. Rehabil. Med. (2003) 66–72.
- 30 Vierck C.J., Siddall P., Yezierski R.P. Pain following spinal cord injury: animal studies and mechanistic studies. Pain (2000) 89 1–5.
- 31 Yezierski R.P. Pain following spinal cord injury: pathophysiology and central mechanisms. Prog. Brain Res. (2000) 129 429–449.
- 32 Finnerup N.B., Otto M., McQuay H.J., Jensen T.S., Sindrup S.H. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain (2005) 118 289–304.
- 33 Sindrup S.H., Graf A., Sfikas N. The NK(1)-receptor antagonist TKA731 in painful diabetic neuropathy: a randomised, controlled trial. Eur. J. Pain (2006) 10 567–571.
- 34 Vierck C.J. Animal models of pain, in: S.B. McMahon, M Koltzenburg. (Eds), Textbook of pain, Elsevier, Churchill Livingstone, 2006, pp. 175–185.
- 35 Woolf C.J., Bennett G.J., Doherty M. et al. Towards a mechanism-based classification of pain? Pain (1998) 77 227–229.
- 36 Jensen T.S., Baron R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain (2003) 102 1–8.
- 37 Breivik E.K., Bjornsson G.A., Skovlund E.A. Comparison of pain rating scales by sampling from clinical trial data. Clin. J. Pain (2000) 16 22–28.
- 38 Herr K.A., Spratt K., Mobily P.R., Richardson G. Pain intensity assessment in older adults: use of experimental pain to compare psychometric properties and usability of selected pain scales with younger adults. Clin. J. Pain (2004) 20 207–219.
- 39 Turk D.C., Dworkin R.H., Allen R.R. et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain (2003) 106 337–345.
- 40 Cruccu G., Anand P., Attal N. et al. EFNS guidelines on neuropathic pain assessment. Eur. J. Neurol. (2004) 11 153–162.
- 41 Cook R.J., Sackett D.L. The number needed to treat: a clinically useful measure of treatment effect. BMJ (1995) 310 452–454.
- 42 McQuay, H.J., Moore, R.A. An evidence based resource for pain relief. Oxford University Press, Oxford, 1998.
- 43 Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain (1975) 1 277–299.
- 44 Melzack R. The short-form McGill Pain Questionnaire. Pain (1987) 30 191–197.
- 45 Turk D.C., Rudy T.E., Salovey P. The McGill Pain Questionnaire reconsidered: confirming the factor structure and examining appropriate uses. Pain (1985) 21 385–397.
- 46 Georgoudis G., Oldham J.A., Watson P.J. Reliability and sensitivity measures of the Greek version of the short form of the McGill Pain Questionnaire. Eur. J. Pain (2001) 5 109–118.
- 47 Cardenas D.D., Turner J.A., Warms C.A., Marshall H.M. Classification of chronic pain associated with spinal cord injuries. Arch. Phys. Med. Rehabil. (2002) 83 1708–1714.
- 48 Cleeland C.S., Ryan K.M. Pain assessment: global use of the Brief Pain Inventory. Ann. Acad. Med. Singapore (1994) 23 129–138.
- 49 Tan G., Jensen M.P., Thornby J.I., Shanti B.F. Validation of the Brief Pain Inventory for chronic nonmalignant pain. J. Pain (2004) 5 133–137.
- 50 Kerns R.D., Turk D.C., Rudy T.E. The West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain (1985) 23 345–356.
- 51 Bergstrom G., Jensen I.B., Bodin L., Linton S.J., Nygren A.L., Carlsson S.G. Reliability and factor structure of the Multidimensional Pain Inventory–Swedish Language Version (MPI-S). Pain (1998) 75 101–110.
- 52 Widerstrom-Noga E.G., Cruz-Almeida Y., Martinez-Arizala A., Turk D.C. Internal consistency, stability, and validity of the spinal cord injury version of the multidimensional pain inventory. Arch. Phys. Med. Rehabil. (2006) 87 516–523.
- 53 Galer B.S., Jensen M.P. Development and preliminary validation of a pain measure specific to neuropathic pain: the Neuropathic Pain Scale. Neurology (1997) 48 332–338.
- 54 Krause S.J., Backonja M.M. Development of a neuropathic pain questionnaire. Clin. J. Pain (2003) 19 306–314.
- 55 Bouhassira D., Attal N., Fermanian J. et al. Development and validation of the Neuropathic Pain Symptom Inventory. Pain (2004) 108 248–257.
- 56 Sindrup S.H., Jensen T.S. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain (1999) 83 389–400.
- 57 Fields H.L., Rowbotham M., Baron R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol. Dis. (1998) 5 209–227.
- 58 Rolke R., Magerl W., Campbell K.A. et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur. J. Pain (2006) 10 77–88.
- 59 Wasner G., Kleinert A., Binder A., Schattschneider J., Baron R. Postherpetic neuralgia: topical lidocaine is effective in nociceptor-deprived skin. J. Neurol. (2005) 252 677–686.
- 60 Finnerup N.B., Jensen T.S. Mechanism-based classification of neuropathic pain: A critical analysis. Nat. Clin. Prac. Neurol. (2005) 2 107–115.
- 61 Gottrup H., Bach F.W., Juhl G., Jensen T.S. Differential effect of ketamine and lidocaine on spontaneous and mechanical evoked pain in patients with nerve injury pain. Anesthesiology (2006) 104 527–536.