Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis
Tadeusz Wroblewski
The Genome Center, University of California, Davis, 1 Shiels Ave., Davis, CA 95616, USA
Search for more papers by this authorAnna Tomczak
The Genome Center, University of California, Davis, 1 Shiels Ave., Davis, CA 95616, USA
Present address: Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
Search for more papers by this authorCorresponding Author
Richard Michelmore
The Genome Center, University of California, Davis, 1 Shiels Ave., Davis, CA 95616, USA
Correspondence (fax +530-752-9659; e-mail [email protected])Search for more papers by this authorTadeusz Wroblewski
The Genome Center, University of California, Davis, 1 Shiels Ave., Davis, CA 95616, USA
Search for more papers by this authorAnna Tomczak
The Genome Center, University of California, Davis, 1 Shiels Ave., Davis, CA 95616, USA
Present address: Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
Search for more papers by this authorCorresponding Author
Richard Michelmore
The Genome Center, University of California, Davis, 1 Shiels Ave., Davis, CA 95616, USA
Correspondence (fax +530-752-9659; e-mail [email protected])Search for more papers by this authorSummary
Agrobacterium-mediated transient assays for gene function are increasingly being used as alternatives to genetic complementation and stable transformation. However, such assays are variable and not equally successful in different plant species. We analysed a range of genetic and physiological factors affecting transient expression following agroinfiltration, and developed a protocol for efficient and routine transient assays in several plant species. Lettuce exhibited high levels of transient expression and was at least as easy to work with as Nicotiana benthamiana. Transient expression occurred in the majority of cells within the infiltrated tissue and approached 100% in some regions. High levels of transient expression were obtained in some ecotypes of Arabidopsis; however, Arabidopsis remains recalcitrant to routine, genotype-independent transient assays. Transient expression levels often exceeded those observed in stably transformed plants. The laboratory Agrobacterium tumefaciens strain C58C1 was the best strain for use in plant species that did not elicit a necrotic response to A. tumefaciens. A wild A. tumefaciens strain, 1D1246, was identified that provided high levels of transient expression in solanaceous plants without background necrosis, enabling routine transient assays in these species.
References
- Anderson, A.R. and Moore, L.W. (1979) Host specificity of the genus Agrobacterium. Phytopathology, 69, 320–323.
- Barker, R.F., Idler, K.B., Thompson, D.V. and Kemp, J.D. (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid 15955. Plant Mol. Biol. 2, 335–350.
- Bechtold, N., Ellis, J. and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. 316, 1194–1199.
- Bendahmane, A., Querci, M., Kanyuka, K. and Baulcombe, D.C. (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 21, 73–81.
- Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721 .
- Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science, 263, 802–805.
- Chen, C.Y., Wang, L. and Winang, S.C. (1991) Characterization of the supervirulent virG gene of the Agrobacterium tumefaciens plasmid pTiBo542. Mol. Gen. Genet, 230, 302–309.
- Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.
- Dandekar, A.M., Gupta, P.K., Durzan, D.J. and Knauf, V. (1987) Genetic transformation of foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii). Bio/Technology, 5, 587–590.
- De Cleene, M. and De Ley, J. (1976) The host range of crown gall. Bot. Rev. 42, 389–466.
- Deng, W., Pu, X., Goodman, R.N., Gordon, M.P. and Nester, E.W. (1995) T-DNA genes responsible for inducing a necrotic response on grape vines. Mol. Plant–Microbe Interact. 8, 538–548.
- Ditt, R., Nester, E.W. and Comai, L. (2001) Plant gene expression responses to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA, 98, 10 954–10 959.
- Felix, G., Duran, J.D., Volko, S. and Boller, T. (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276.
-
Gheysen, G.,
Dhase, P.,
Van Montagu, M. and
Shell, J. (1985) DNA flux across genetic barriers: The crown gall phenomena. In: Plant Gene Research: Genetic Flux in Plants ( B. Hohn and
E.S. Dennis, eds), pp. 11–47. New York, Vienna: Springer-Verlag.
10.1007/978-3-7091-8765-4_2 Google Scholar
- Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, C., Cielo, C. and Slater, S. (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 294, 2323–2328.
- Hamilton, C.M. (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 200, 107–116.
- Hamilton, R.H. and Fall, M.Z. (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia, 27, 229–3230.
- Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA, 94, 2122–2127.
- Hellens, R. and Mullineaux, P. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.
- Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 303, 179–180.
- Holsters, M., Silva, B., Van Vliet, F., Genetello, C., De Block, M., Dhaese, P., Depicker, A., Inze, D., Engler, G., Villarroel, R., Van Montagu, M. and Schell, J. (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid, 3, 212–230.
- Janssen, B.-J. and Gardner, R.C. (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 14, 61–72.
- Jefferson, R.A., Kavanagh, T.A. and Bevan, M.V. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.
- Johansen, L.K. and Carrington, J.C. (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 126, 930–938.
- Jones, J.D., Shlumukov, L., Carland, F., English, J., Scofield, S.R., Bishop, G.J. and Harrison, K. (1992) Effective vectors for transformation, expression of heterologous genes and assay in transposon excision in transgenic plants. Trans. Res. 1, 285–297.
- Kapila, J., De Rycke, R., Van Montagu, M. and Angenon, G. (1997) An Agrobacterium-mediated transient gene expression for intact leaves. Plant Sci. 122, 101–108.
- Leemans, J., Shaw, C., Deblaere, R., De Greve, H., Hernalsteens, J.P., Maes, M., Van Montagu, M. and Schell, J. (1981) Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes into plant cells. J. Mol. Appl. Genet. 1, 149–164.
- Lippincott, B.B., Whatley, M.H. and Lippincott, J.A. (1977) Tumor induction by Agrobacterium involves attachment of the bacterium to a site on the host plant cell wall. Plant Physiol. 59, 388–390.
- Liu, C.-N., Li, X.Q. and Gelvin, S.B. (1992) Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol. Biol. 20, 1071–1087.
- Llave, C., Kasshau, K.D. and Carrington, J.C. (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. USA, 97, 13 401–13 406.
- Luo, Z.-Q. and Farrand, S.K. (1999) Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J. Bacteriol. 181, 618–626.
- Moore, L.W., Kado, C.I. and Bouzar, H. (1988) Agrobacterium. In: Laboratory Guide for Identification of Pathogenic Bacteria, 2nd edn ( N.W. Schaad, ed.). St. Paul, MN: APS Press.
- Nam, J., Matthysse, A.G. and Gelvin, S.B. (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell, 9, 317–333.
- Olhoft, P.M., Lin, K., Galbraith, J., Nielsen, N.C. and Somers, D.A. (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Report, 20, 731–737.
- Olhoft, P.M. and Somers, D.A. (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Report, 20, 706–711.
- Ooms, G., Hooykaas, J.J., Moolenaar, G. and Schilperoort, R.A. (1981) Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene, 14, 33–50.
- Porta, C., Spall, V.E., Lin, T., Johnson, J.E. and Lomonossoff, G.P. (1996) The development of cowpea mosaic virus as a potential source of novel vaccines. Intervirology, 39, 79–84.
- Roberts, R.L., Matz, M., Monks, D.E., Lockwood Mullaney, M., Hall, T. and Nester, E.W. (2003) Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc. Natl. Acad. Sci. USA, 100, 6634–6639.
- Robinette, D. and Matthysse, A.G. (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 172, 5742–5749.
- Rogowsky, P.M., Close, T.J., Chimera, J.A., Shaw, J.J. and Kado, C.I. (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169, 5101–5112.
- Rossi, L., Escudero, J., Hojn, B. and Tinland, E. (1993) Efficient and sensitive assay for T-DNA-dependent transgene expression. Plant Mol. Biol. Report, 11, 220–229.
- Salmond, G.P.C. (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol. 32, 181–200.
-
Sambrook, J.,
Fritsch, E.F. and
Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
10.1111/j.1095-8312.1996.tb01434.x Google Scholar
- Sanchez, F., Martinez-Herrera, D., Aguilar, I. and Ponz, F. (1998) Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Res. 55, 207–219.
- Schob, H., Kunz, C. and Meins, F. Jr (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigation of sequence requirements for gene silencing. Mol. Gen. Genet. 256, 581–585.
- Sciaky, D., Montoya, A.L. and Chilton, M.-D. (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid, 1, 238–253.
- Scofield, S.R., Tobias, C.M., Rathjen, J.P., Chang, J.H., Lavelle, D.T., Michelmore, R.W. and Staskawicz, B.J. (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science, 274, 2063–2065.
- Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E. and Innes, R.W. (2003) Cleavage of Arabidopsis PBS1 by Bacterial Type III Effector. Science, 301, 1230–1233.
- Stachel, S.E., Nester, E.W. and Zambryski, P.C. (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc. Natl. Acad. Sci. USA, 83, 379–383.
- Tennigkeit, J. and Matzura, H. (1991) Nucleotide sequence analysis of a chloramphenicol-resistance determinant from Agrobacterium tumefaciens and identification of its gene product. Gene, 98, 113–116.
- Trieu, A.T., Burleigh, S.H., Kardailsky, I.V., Maldonado Mendoza, I.E., Versaw, W.K., Blaylock, L.A., Shin, H., Chiou, T.-J., Katagi, H., Dewbre, G.R., Weigel, D. and Harrison, M.J. (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22, 531–543.
- Van der Hoorn, J.A.L., Laurent, F., Roth, R. and De Wit, P.J.G.M. (2000) Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/cf-9-induced and Avr4/Cf-4-induced necrosis. Mol. Plant–Microbe Interact. 13, 439–446.
- Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245–250.
- Vaquero, C., Sack, M., Chandler, J., Drossard, J., Schuster, F., Monecke, M., Schillberg, S. and Fischer, R. (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc. Natl. Acad. Sci. USA, 96, 11 128–11 133.
- Vaquero, C., Sack, M., Schuster, F., Finnern, R., Drossard, J., Schumann, A. and Fischer, R. (2002) A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J. 16, 408–410.
- Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S. (1998) Transgene-induced gene silencing in plants. Plant J. 16, 651–659.
- Veena, Jiang, H., Doerge, R.W. and Gelvin, S.B. (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J. 35, 219–236.
- Voinnet, O. (2001) RNA silencing as a plant immune system against viruses. Trends Genet. 17, 449–459.
- Voinnet, O., Pinto, Y.M. and Baulcombe, D. (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA, 96, 14 147–14 152.
- Voinnet, O., Rivas, S., Mestre, P. and Baulcombe, D. (2003) An enhancement transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956.
- Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, J., Chen, L., Wood, G.E., Almeida, N.F. Jr, Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A., Karp, P.D., Bovee, D. Sr, Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M.-J., McClelland, E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S., Hendrick, C., Zhao, Z.-Y., Dolan, M., Chumley, F., Tingey, S.V., Tomb, J.-F., Gordon, M.P., Olson, M.V. and Nester, E.W. (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 294, 2317–2323.
- Xiang, C., Han, P., Lutziger, I., Wang, K. and Oliver, D.J. (1999) A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717.
- Yang, Y., Li, R. and Qi, M. (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 22, 543–551.
- Yanofsky, M., Lowe, B., Montoya, A., Rubin, R., Krul, W., Gordon, M. and Nester, E. (1985a) Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol. Gen. Genet. 201, 237–246.
- Yanofsky, M., Montoya, A., Knauf, V., Lowe, B., Gordon, M. and Nester, E. (1985b) Limited-host-range plasmid of Agrobacterium tumefaciens: molecular and genetic analyses of transferred DNA. J. Bacteriol. 163, 341–348.