Inferring evolutionary processes from phylogenies
MARK PAGEL
Mark Pagel, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K.
Search for more papers by this authorMARK PAGEL
Mark Pagel, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K.
Search for more papers by this authorAbstract
Evolutionary processes shape the regular trends of evolution and are responsible for the diversity and distribution of contemporary species. They include correlated evolutionary change and trajectories of trait evolution, convergent and parallel evolution, differential rates of evolution, speciation and extinction, the order and direction of change in characters, and the nature of the evolutionary process itself—does change accumulate gradually, episodically, or in punctuational bursts. Phylogenies, in combination with information on species, contain the imprint of these historical evolutionary processes. By applying comparative methods based upon statistical models of evolution to well resolved phylogenies, it is possible to infer the historical evolutionary processes that must have existed in the past, given the patterns of diversity seen in the present. I describe a set of maximum likelihood statistical methods for inferring such processes. The methods estimate parameters of statistical models for inferring correlated evolutionary change in continuously varying characters, for detecting correlated evolution in discrete characters, for estimating rates of evolution, and for investigating the nature of the evolutionary process itself. They also anticipate the wealth of information becoming available to biological scientists from genetic studies that pin down relationships among organisms with unprecedented accuracy.
References
- Collinge, J., Sidle, K. C. L., Meads, J., Ironside, J. & Hill, A. F. 1996. Molecular analysis of prion strain variation and the etiology of New Variant CJD. Nature 383(6602), 685–690.
-
Cotgreave, P. &
Pagel, M.
1997. Predicting and understanding rarity: the comparative approach. In
The Biology of Rarity: the causes and consequences of rare-common differences (eds. W. Kunin and
K. Gaston): Chapman and Hall, 237–261.
10.1007/978-94-011-5874-9_13 Google Scholar
- Edwards, A. W. F. 1972. Likelihood. The John Hopkins University Press.
- Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.
- Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125, 1–15.
- Fitch, W. M., Leiter, J. M. E., Li, X. & Palese, P. 1991. Positive Darwinian evolution in human influenza A viruses. Proc. Natl. Acad. Sci. USA 88, 4270–4274.
- Friday, A. 1989. Quantitative aspects of the estimation of evolutionary trees. Folia Primat. 53, 221–234.
- Garland, T. 1992. Rate tests for phenotypic evolution using phylogenetically independent contrasts. Am. Nat. 140, 509–519.
- Garland, T., Harvey, P. H. & Ives, A. R. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.
- Gillespie, J. H. 1991. The causes of molecular evolution. Oxford : Oxford University Press.
- Goldman, N. 1990. Maximum likelihood inference of phylogenetic trees. Syst. Zool. 39, 345–361.
- Grafen, A. 1989. The phylogenetic regression. Phil. Tran. R. Soc. Lond. B 326, 119–157.
- Grafen, A. & Ridley, M. 1996. Statistical tests for discrete cross-species data. J. Theor. Biol. 183, 255–267.
- Hansen, T. & Martins, E. 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50, 1404–1417.
-
Harvey P. H. &
Pagel, M.
1991. The comparative method in evolutionary biology. Oxford University Press.
10.1093/oso/9780198546412.001.0001 Google Scholar
- Hillis, D., Moritz, M. & Mable, B. K. 1996. Molecular Systematics ( 2nd Edition). Sunderland , Mass : Sinauer.
- Holden, C. & Mace, R. 1997. A phylogenetic analysis of the evolution of lactose digestion in adults. Hum. Biol. 69, 60–68.
- Huey, R. B. 1987. Phylogeny, history and the comparative method. In New directions in ecological physiology (eds M. E. Feder, A. F. Bennett, W. Burgren & R. B. Huey). Cambridge University Press.
- Huey, R. B. & Bennett, A. F. 1987. Phylogenetic studies of co-adaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41, 1098–1115.
- Jermiin, L. S., Graur, D., Lowe, R. M. & Crozier, R. 1994. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes. J. Mol. Evol. 39, 160–173.
- Johnston, J. 1963. Econometric Methods. New York : McGraw Hill.
- Kimura, M. 1968. Evolutionary rate at the molecular level. Nature 217, 624–626.
- Krakauer, D. C., Pagel, M., Southwood, T. R. E. & Zanotto, P. M. de A. 1996. Phylogenesis of prion protein. Nature 380, 675.
- Krakauer, D. C. & Pagel, M. 1996. The genealogy of a toxic protein and the case of BSE. Soc. Biol. Hum. Aff 61, 45–54.
- Krakauer, D. C., Zanotto, P. de A. & Pagel, M. 1998. Prion's progress: patterns and rates of molecular evolution in relation to spongiform disease. J. Mol. Evol., in press.
- Lutzoni, F. & Pagel, M. 1997. Accelerated molecular evolution as a consequence of transitions to mutualism. Proc. Natl. Acad. Sci. USA 94, 11422–11427.
- Mace, R., & Pagel, M. 1997. Tips, branches, and nodes: seeking adaptation through comparative studies. In Human Nature: a critical reader (ed. L. Betzig): 297–310. New York : Oxford University Press.
- Nee, S., Holmes, E. C., Rambaut, A. & Harvey, P. H. 1996. Inferring population history from molecular phylogenies. In New uses for new phylogenies (eds P. H. Harvey, A. Leigh-Brown, J. Maynard Smith & S. Nee). Oxford University Press.
- Pagel, M. 1992. A method for the analysis of comparative data. J. Theor. Biol. 156, 431–442.
- Pagel, M. 1993. Seeking the evolutionary regression coefficient: an analysis of what comparative methods measure. J. Theor. Biol. 164, 191–205.
- Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45.
- Pagel, M. & Harvey, P. H. 1989a. Comparative methods for investigating adaptation depend upon evolutionary models. Folia Primat. 53, 203–220.
- Pagel, M. & Harvey, P. H. 1989b. Taxonomic differences in the scaling of brain on body weight among mammals. Science 244, 1589–1593.
- Price, T. & Birch, G. L. 1996. Repeated evolution of sexual color dimorphism in passerine birds. Auk 113, 842–848.
- Purvis, A. 1995 A composite estimate of primate phylogeny. Phil. Trans. R. Soc. Lond. B 348, 405–421.
- Rao, C. R. & Kleffe, J. 1988. Estimation of variance components and applications. North Holland: Amsterdam .
- Read, A. & Nee, S. 1995. Inference from binary comparative data. J. Theor. Biol. 173: 99–108.
- Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R. & Wüthrich, K. 1996. NMR structure of the mouse prion protein domain PrP(121–231). Nature 382, 180–182.
- Schluter, D. 1995. Uncertainty in ancient phylogenies. Nature 377, 108–109.
- Sueoka, N. 1962. On thegenetic basis of variation and heterogeneity of DNA base composition. Proc. Natl. Acad. Sci. USA 48, 582–592.
- Sueoka, N. 1988. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 85, 2653–2657.
- Vilá, C. et al. 1997. Multiple and ancient origins of the domestic dog. Science 276, 1687.
- Ward, D. & Seely, M. K. 1996. Adaptation and constraint in the evolution of the physiology and behaviour of the Namib Desert Tenebrionid beetle genus Onymacris. Evolution 50, 1231–1240.
- Weisberg, S. 1985. Applied linear regression. 2nd edition. Wiley.