On the use of an anti-symmetric four-point bend specimen for mode II fracture experiments
M. R. AYATOLLAHI
Fatigue and Fracture Lab., Center of Excellence for Experimental Solid Mechanics and Dynamics, Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, 16846, Tehran, Iran
Search for more papers by this authorM. R. M. ALIHA
Fatigue and Fracture Lab., Center of Excellence for Experimental Solid Mechanics and Dynamics, Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, 16846, Tehran, Iran
Search for more papers by this authorM. R. AYATOLLAHI
Fatigue and Fracture Lab., Center of Excellence for Experimental Solid Mechanics and Dynamics, Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, 16846, Tehran, Iran
Search for more papers by this authorM. R. M. ALIHA
Fatigue and Fracture Lab., Center of Excellence for Experimental Solid Mechanics and Dynamics, Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, 16846, Tehran, Iran
Search for more papers by this authorABSTRACT
The edge-cracked beam specimen subjected to anti-symmetric four-point bend (ASFPB) loading has been conventionally used in the past for investigating the pure mode II fracture experiments in many engineering materials. However, it is shown through finite element analysis that the ASFPB specimen sometimes fails to produce pure mode II conditions. For anti-symmetric loads applied close to the crack line, there are considerable effects from KI and T-stress in the ASFPB specimen. Pure mode II is provided only when the applied loads are sufficiently far from the crack plane.
REFERENCES
- 1 Royer, J. (1986) A specimen geometry for plane mixed modes. Eng. Fract. Mech. 23, 363–375.
- 2 Royer, J. (1988) Study of pure and mixed-mode fracture of a brittle material. Exp. Mech. 45, 382–387.
- 3 Ueda, Y., Ikeda, K., Yao, T. and Aoki, M. (1983) Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads. Eng Fract. Mech. 18, 1131–1158.
- 4
Erdogan, F. and
Sih, G. C. (1963) On the crack extension in plates under plane loading and transverse shear.
J. Basic Eng. Trans. ASME
85, 519–525.
10.1115/1.3656897 Google Scholar
- 5 Miyagawa, H., Sato, C. and Ikegami, K. (2002) Mode II mesoscopic fracture toughness of CFRP by Raman coating method. J. Comp. Mater. 36, 1135–1147.
- 6 Matsubara, G., Ono, H. and Tanaka, K. (2006) Mode II fatigue crack growth from delamination in unidirectional tape and satin-woven fabric laminates of high strength GFRP. Int. J. Fatigue 28, 1177–1186.
- 7 Schön, J., Nyman, T., Blom, A. and Ansell, H. (2000) Numerical and experimental investigation of a composite ENF-specimen. Eng. Fract. Mech. 65, 405–433.
- 8 Backers, T., Stephansson, O. and Rybacki, E. (2002) Rock fracture toughness testing in Mode II—punch-through shear test. Int. J. Rock Mech. Min. Sci. 39, 755–769.
- 9 Napier, J. and Backers, T. (2006) Comparison of numerical and physical models for understanding shear fracture processes. Pure appl. Geophys. 163, 1153–1174.
- 10 Davies, J. (1995) Study of shear fracture in mortar specimen. Cem. Concr. Res. 25, 1031–1042.
- 11
Liu, H. Y.,
Kou, S. Q.,
Lindqvist, P. A. and
Tang, C. A. (2004) Numerical simulation of shear fracture (mode II) in heterogeneous brittle rock.
Int. J. Rock Mech. Min. Sci.
41, 14–19.
10.1016/j.ijrmms.2004.03.013 Google Scholar
- 12 Xu, S., Gao, H. and Zhang, X. (2006) Experimental investigation on mode II fracture toughness KIIC of concrete and fracture behavior. Key Eng. Mater. 324–325, 1149–1152.
- 13 Davies, J. (1987) Fracture toughness of mortar in shear – compression field. J. Mater. Sci. Lett. 6, 879–881.
- 14 Reinhardt, H. W. and Xu, S. (1998) Experimental determination of KIIc of normal strength concrete. Mater. Struct. 31, 296–302.
- 15 Richard, H. A. (1981) A new shear specimen. Int. J. Fract. 17, R105–R107.
- 16 Banks-Sills, L. and Arcan, M. (1983) An edge-cracked mode II fracture specimen. Exp. Mech. 40, 257–261.
- 17 Mahajan, R. V. and Ravi-Chandar, K. (1989)An experimental investigation of mixed-mode fracture. Int. J. Fract. 41, 235–252.
- 18 Choupani, N. (2008) Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Mater. Sci. Eng.-A 478, 229–242.
- 19 Smith, D. J., Ayatollahi, M. R. and Pavier, M. J. (2006) On the consequences of T-stress in elastic brittle fracture. Proc. R. Soc. A Mathemat. Phys. Eng. Sci. 462, 2415–2437.
- 20 Awaji, H. and Sato, S. (1978) Combined mode fracture toughness measurement by the disc test. J. Eng. Mater. Technol. 100, 175–182.
- 21 Atkinson, C., Smelser, R. E. and Sanchez, J. (1982) Combined mode fracture via the cracked Brazilian disc test. Int. J. Fract. 18, 279–291.
- 22 Shetty, D. K., Rosenfield, A. R. and Duckworth, W. H. (1987) Mixed-mode fracture in biaxial stress state: application of the diametral compression (Brazilian disk) test. Eng. Fract. Mech. 26, 825–840.
- 23 Liu, C., Huang, Y. and Stout, M. G. (1998) Enhanced mode-II fracture toughness of an epoxy resin due to shear banding. Acta Mater 46, 5647–5661.
- 24 Aliha, M. R. M., Ashtari, R. and Ayatollahi, M. R. (2006) Mode I and mode II fracture toughness testing for marble. J. Appl. Mech. Mater. 5–6, 181–188.
- 25 Ayatollahi, M. R. and Aliha, M. R. M. (2005) Cracked Brazilian disc specimen subjected to mode II deformation. Eng. Fract. Mech. 72, 493–503.
- 26 Lim, I. L., Johnston, I. W., Choi, S. K. and Boland, J. N. (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2 – mixed mode. Int J. Rock Mech. Min. Sci. Geomech. Abstr. 31, 199–212.
- 27 Ayatollahi, M. R., Aliha, M. R. M. and Hassani, M. M. (2006) Mixed mode brittle fracture in PMMA- An experimental study using SCB specimens. J. Mater. Sci. Eng.-A 417, 348–356.
- 28 Ayatollahi, M. R. and Aliha, M. R. M. (2006) On determination of mode II fracture toughness using semi-circular bend specimen. Int. J. Solids Struct. 43, 5217–5227.
- 29 Maccagno, T. M. and Knott J. F. (1989) The fracture behaviour of PMMA in mixed modes I and II. Eng. Fract. Mech. 34, 65–86.
- 30 Suresh, S., Shih, C. F., Morrone, A. and O’Dowd, N. P. (1990) Mixed-mode fracture toughness of ceramic materials. J. Am. Ceram. Soc. 73, 1257–1267.
- 31 Shi, Y. W. and Zhou, N. N. (1995) Comparison of microshear toughness and mode II fracture toughness for structural steels. Eng. Fract. Mech. 51, 669–677.
- 32 Araki, W., Asahi, D., Adachi, T. and Yamaji. A. (2005) Time–temperature dependency of mode II fracture toughness for bisphenol A type epoxy resin. J. Appl. Polym. Sci. 96, 51–55.
- 33 Li, M. and Sakai, M. (1996) Mixed-mode fracture of ceramics in asymmetric four-point bending. J. Am. Cer. Soc. 79, 2718–2726.
- 34 Shi, Y. W., Zhou, N. N. and Zhang, J. X. (1994) Comparison of mode I and mode II elastic-plastic fracture toughness for two alloyed high strength steels. Int. J. Fract. 68, 89–97.
- 35 Wang, J. J., Zhu, J. G., Chiu, C. F. and Chai, H. J. (2007) Experimental study on fracture behavior of silty clay. Geotech. Test. J. 30, 303–311.
- 36 Li, H. Yang, H. and Liu, Z. (2000) Experimental investigation of fracture toughness KIIc of frozen soil. Canad. Geotech. J. 37, 253–258.
- 37 Swartz, S. E., Lu, L. W., Tang, L. D. and Refai, T. M. E. (1988) Mode II fracture parameter estimates for concrete from beam specimens. Exp. Mech. 146–153.
- 38 Torres, Y. Sarin, V. K., Anglada, M. and Llanes, L. (2005) Loading mode effects on the fracture toughness and fatigue crack growth resistance of WC–Co cemented carbides. Scripta Mater. 52, 1087–1091.
- 39 Finnie, I. and Saith, A. (1973) A note on the angled crack problem and the directional stability of cracks. Int. J. Fract. 9, 484–486.
- 40 Theocaris, P. S. (1984) A higher order approximation for the T-criterion of fracture in biaxial fields. Eng. Fract. Mech. 19, 975–991.
- 41 Smith, D. J., Ayatollahi, M. R. and Pavier, M. J. (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading. Fatigue Fract. Eng. Mater. Struct. 24, 137–150.
- 42 Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J. and Pavier, M. J. (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng. Fract. Mech. 77, 2200–2212.
- 43 Ayatollahi, M. R., Smith, D. J. and Pavier, M. J. (2002) Crack-tip constraint in mode II deformation. Int. J. Fract. 113, 153–173.
- 44 Geers, M. G. D., Borst, R. D. and Peerlings, R. H. J. (2000) Damage and crack modeling in single-edge and double-edge notched concrete beams. Eng. Fract. Mech. 65, 247–261.
- 45 Galvezi, J. C., Cendon, D. A. and Planas, J. (2002) Influence of shear parameters on mixed-mode fracture of concrete. Int. J. Fract. 118, 163–189.
- 46 Aliha, M. R. M., Ayatollahi, M. R. and Kharazi, B. (2009) Mode II brittle fracture assessment using ASFPB specimen. Int. J. Fract. 159, 241–246.