Characterization of an Isoprene Synthase from Leaves of Quercus petraea (Mattuschka) Liebl.
Corresponding Author
J.-P. Schnitzler
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Frauenhofer-Institut Atmosphärische Umweltforschung (IFU) Kreuzeckbahnstr. 19 D-82467 Garmisch-Partenkirchen Germany e-mail: [email protected]Search for more papers by this authorR. Arenz
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Search for more papers by this authorR. Steinbrecher
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Search for more papers by this authorAndrea Lehning
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Search for more papers by this authorCorresponding Author
J.-P. Schnitzler
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Frauenhofer-Institut Atmosphärische Umweltforschung (IFU) Kreuzeckbahnstr. 19 D-82467 Garmisch-Partenkirchen Germany e-mail: [email protected]Search for more papers by this authorR. Arenz
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Search for more papers by this authorR. Steinbrecher
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Search for more papers by this authorAndrea Lehning
Fraunhofer-Institut Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
Search for more papers by this authorAbstract:
Biogenic emission of isoprene (2-methyl-1,3-butadiene) by many plant species plays an important role in atmospheric chemistry. Its rapid breakdown in the atmosphere substantially affects the oxidation potential of the atmosphere. Leaves of Quercus petraea were found to contain an enzyme which catalyses the conversion of dimethylallyl pyrophosphate (DMAPP) to isoprene. A standard enzyme assay was established and the isoprene synthase activity was characterized in purified leaf extracts. Optimum enzyme activity was observed at pH 8.5. The enzyme had an apparent Km of 0.97 mM for its substrate DMAPP, but isopentenyl pyrophosphate (IPP), the isomeric form of DMAPP, was not converted to isoprene by the enzyme extract. The temperature optimum of the enzyme activity was 35 °C. Isoprene synthase activity was strictly dependent on the presence of bivalent cations, with magnesium being most effective. Molecular weight determination by FPLC revealed the presence of a single protein with a native molecular weight of approximately 90–100 kDa.
References
- Alonzo, W. R. and Croteau, R. Prenyltransferases and cyclases. Methods in Plant Biochemistry 9 (1993), 239–260.
- Ames, B. N. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8 (1966), 115–118.
- Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976), 248–254.
- Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C. S. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241 (1988), 1473–1475.
- Colby, S. M., Alonso, W. R., Katahira, E. J., McGarvey, D. J., and Croteau, R. 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata). J. Biol. Chem. 2168 (1993), 23016–23024.
- Croteau, R. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87 (1987), 929–954.
- Croteau, R. Metabolism of plant monoterpenes. ISI Atlas of Science: Biochemistry 1 (1988), 182–187.
- Delwiche, C. F. and Sharkey, T. D. Rapid appearance of 13C in biogenic isoprene when 13CO.2. is fed to intact leaves. Plant Cell Environ. 16 (1993), 587–591.
- Guenther, A., Monson, R. K., and Fall, R. Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development. J. Geophys. Research. 93 (1991), 10799–10808.
- Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P. A global model of natural volatile organic compound emissions. J. Geophys. Research 100. (1995), 8873–8892.
- Keller, K. R. and Thompson, R. A rapid synthesis of isoprenoid diphosphates and their isolation in one step using either thin layer or flash chromatography. J. Chromatogr. 645 (1993), 161–167.
- Kleinig, H. The role of plastids in isoprenoid biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40 (1989), 39–59.
- Kuzma, J. and Fall, R. Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol. 101 (1993), 435–440.
- Loreto, F. and Sharkey, T. D. On the relationship between isoprene emission and the photosynthetic metabolites under different environmental conditions. Planta 189 (1993), 420–424.
- Monson, R. K. and Fall, R. Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Plant Physiol. 90 (1989), 267–274.
- Monson, R. K., Jaeger, C. H., Adams III, W. W., Driggers, E. M., Silver, G. M., and Fall, R. Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol. 98 (1992), 1175–1180.
- Sanadze, G. A. The principle scheme of photosynthetic carbon conversion in cells of isoprene releasing plants. Current Research in Photosnythesis IV (1990), 231–237.
- Schulze-Siebert, D. and Schultz, G. Full automony in isoprenoid synthesis in spinach chloroplasts. Plant Physiol. Biochem. 25 (1987), 145–153.
- Sharkey, T. D., Loreto, F., and Delwiche, C. F. High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14 (1991a), 333–338.
-
Sharkey, T. D.,
Loreto, F., and
Delwiche, C. F.
The biochemistry of isoprene emission from leaves during photosynthesis. In: T. D. Sharkey,
E. A. Holland,
H. A. Mooney eds., Trace Gas Emission from Plants, pp. 153–184. Academic Press San Diego, 1991b.
10.1016/B978-0-12-639010-0.50012-1 Google Scholar
- Sharkey, T. D. and Loreto, F. Water stress, temperature and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 343 (1994), 1–6.
- Silver, G. M. and Fall, R. Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol. 97 (1991), 1588–1591.
- Silver, G. M. and Fall, R. Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J. Biol. Chem. 270 (1995), 13010–13016.
- Steinbrecher, R. Emission of VOCs from selected European ecosystems: The state of the art. In: P. Borell et al. eds., Proceed. EUROTRAC symposium SPB, pp. 448–455. Acad. Publish. bv., the Hague The Netherlands, 1994.
- Steinbrecher, R. and Rabong, R. Emission of terpenoids and C.2.-C.6. hydrocarbons by Norway spruce. In: P. Borell et al. eds., Proceed. EUROTRAC Symposium, pp. 502–506. SPB Acad. Publish. bv., the Hague The Netherlands, 1994.
- Thompson, A. M. The oxidizing capacity of the Earth's atmosphere: probable past and future changes. Science 256 (1992), 1157–1165.
- Tidd, B. K. Some phosphate esters of biological importance. J. Chem. Soc. (B) (1971), 1168–1176.
- Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F. The influence of light and temperature on isoprene emission rates from live oak. Plant Physiol. 69 (1979), 112–118.
- Trainer, M., Williams, E. J., Parrish, D. D., Buhr, M. P., Allwine, E. J., Westberg, H. H., Fehsenfeld, F. C., and Liu, S. C. Models and observations of the impact of natural hydrocarbons on rural ozone. Nature 329 (1987), 705–707.