Vascular morphogenesis by adult bone marrow progenitor cells in three-dimensional fibrin matrices
Corresponding Author
Beate M. Rüger
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
✉ E-mail: [email protected]Search for more papers by this authorJohannes Breuss
Institute of Vascular Biology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorDavid Hollemann
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorGenya Yanagida
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorMichael B. Fischer
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorIsabella Mosberger
Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorAndreas Chott
Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorIrene Lang
Department of Cardiology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorPaul F. Davis
Bioactivity Investigation Group, Wellington School of Medicine, University of Otago, Wellington, New Zealand
Search for more papers by this authorPaul Höcker
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorMarkus Dettke
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorCorresponding Author
Beate M. Rüger
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
✉ E-mail: [email protected]Search for more papers by this authorJohannes Breuss
Institute of Vascular Biology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorDavid Hollemann
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorGenya Yanagida
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorMichael B. Fischer
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorIsabella Mosberger
Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorAndreas Chott
Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorIrene Lang
Department of Cardiology, Medical University of Vienna, Vienna, Austria
Search for more papers by this authorPaul F. Davis
Bioactivity Investigation Group, Wellington School of Medicine, University of Otago, Wellington, New Zealand
Search for more papers by this authorPaul Höcker
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorMarkus Dettke
Department of Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, AustriaTel: +0043 1 40400 2759Fax: +0043 1 40400 5301
Search for more papers by this authorAbstract
Abstract The neovascularization of tissues is accomplished by two distinct processes: de novo formation of blood vessels through the assembly of progenitor cells during early prenatal development (vasculogenesis), and expansion of a pre-existing vascular network by endothelial cell sprouting (angiogenesis), the main mechanism of blood vessel growth in postnatal life. Evidence exists that adult bone marrow (BM)-derived progenitor cells can contribute to the formation of new vessels by their incorporation into sites of active angiogenesis. Aim of this study was to investigate the in vitro self-organizing capacity of human BM mononuclear cells (BMMNC) to induce vascular morphogenesis in a three-dimensional (3D) matrix environment in the absence of pre-existing vessels. Whole BMMNC as well as the adherent and non-adherent fractions of BMMNC were embedded in fibrin gels and cultured for 3–4 weeks without additional growth factors. The expression of hematopoietic-, endothelial-, smooth muscle lineage, and stem cell markers was analyzed by immunohistochemistry and confocal laser-scanning microscopy. The culture of unselected BMMNC in 3D fibrin matrices led to the formation of cell clusters expressing the endothelial progenitor cell (EPC) markers CD133, CD34, vascular endothelial growth factor receptor (VEGFR)-2, and c-kit, with stellar shaped spreading of peripheral elongated cells forming tube-like structures with increasing complexity over time. Cluster formation was dependent on the presence of both adherent and non-adherent BMMNC without the requirement of external growth factors. Developed vascular structures expressed the endothelial markers CD34, VEGFR-2, CD31, von Willebrand Factor (vWF), and podocalyxin, showed basement-membrane-lined lumina containing CD45+ cells and were surrounded by α-smooth muscle actin (SMA) expressing mural cells. Our data demonstrate that adult human BM progenitor cells can induce a dynamic self organization process to create vascular structures within avascular 3D fibrin matrices suggesting a possible alternative mechanism of adult vascular development without involvement of pre-existing vascular structures.
References
- Anghelina, M., Krishnan, P., Moldovan, L. and Moldovan, N.I. (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 168: 529–541.
- Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M. and Isner, J.M. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228.
- Asahara, T., Murohara, T., Sullivan, A., Silver, M., Van Der, Z.R., Li, T., Witzenbichler, B., Schatteman, G. and Isner, J.M. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967.
- Baal, N., Reisinger, K., Jahr, H., Bohle, R.M., Liang, O., Munstedt, Baal, K., Rao, C.V., Preissner, K.T. and Zygmunt, M.T. (2004) Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thromb Haemost 92: 767–775.
- Bautz, F., Rafii, S., Kanz, L. and Mohle, R. (2000) Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp Hematol 28: 700–706.
- Bhattacharya, V., McSweeney, P.A., Shi, Q., Bruno, B., Ishida, A., Nash, R., Storb, R.F., Sauvage, L.R., Hammond, W.P. and Wu, M.H. (2000) Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood 95: 581–585.
- Case, J., Mead, L.E., Bessler, W.K., Prater, D., White, H.A., Saadatzadeh, M.R., Bhavsar, J.R., Yoder, M.C., Haneline, L.S. and Ingram, D.A. (2007) Human CD34+AC133+VEGFR-2+cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35: 1109–1118.
- Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. and Smith, A. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–655.
- Davidoff, A.M., Ng, C.Y., Brown, P., Leary, M.A., Spurbeck, W.W., Zhou, J., Horwitz, E., Vanin, E.F. and Nienhuis, A.W. (2001) Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 7: 2870–2879.
- DeRuiter, M.C., Poelmann, R.E., VanMunsteren, J.C., Mironov, V., Markwald, R.R. and Gittenberger-de Groot, A.C. (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80: 444–451.
- Fernandez, P.B., Lucibello, F.C., Gehling, U.M., Lindemann, K., Weidner, N., Zuzarte, M.L., Adamkiewicz, J., Elsasser, H.P., Muller, R. and Havemann, K. (2000) Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65: 287–300.
- Gang, E.J., Bosnakovski, D., Figueiredo, C.A., Visser, J.W. and Perlingeiro, R.C. (2006) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood.
- Gehling, U.M., Ergun, S., Schumacher, U., Wagener, C., Pantel, K., Otte, M., Schuch, G., Schafhausen, P., Mende, T., Kilic, N., Kluge, K., Schafer, B., Hossfeld, D.K. and Fiedler, W. (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95: 3106–3112.
- Grant, M.B., May, W.S., Caballero, S., Brown, G.A., Guthrie, S.M., Mames, R.N., Byrne, B.J., Vaught, T., Spoerri, P.E., Peck, A.B. and Scott, E.W. (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8: 607–612.
- Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Yung, S., Chimenti, S., Landsman, L., Abramovitch, R. and Keshet, E. (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124: 175–189.
- Gulati, R., Jevremovic, D., Peterson, T.E., Chatterjee, S., Shah, V., Vile, R.G. and Simari, R.D. (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93: 1023–1025.
- Harraz, M., Jiao, C., Hanlon, H.D., Hartley, R.S. and Schatteman, G.C. (2001) CD34- blood-derived human endothelial cell progenitors. Stem Cells 19: 304–312.
- Iwaguro, H., Yamaguchi, J., Kalka, C., Murasawa, S., Masuda, H., Hayashi, S., Silver, M., Li, T., Isner, J.M. and Asahara, T. (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732–738.
- Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A. and Verfaillie, C.M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49.
- Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W.M., Silver, M., Kearney, M., Li, T., Isner, J.M. and Asahara, T. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97: 3422–3427.
- Kocher, A.A., Schuster, M.D., Szabolcs, M.J., Takuma, S., Burkhoff, D., Wang, J., Homma, S., Edwards, N.M. and Itescu, S. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430–436.
- Lewis Carl, S.A., Gillete-Ferguson, I. and Ferguson, D.G. (1993) An indirect immunofluorescence procedure for staining the same cryosection with two mouse monoclonal primary antibodies. J Histochem Cytochem 41: 1273–1278.
- Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N.R., Crystal, R.G., Moore, M.A., Hajjar, K.A., Manova, K., Benezra, R. and Rafii, S. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201.
- Majka, M., Janowska-Wieczorek, A., Ratajczak, J., Ehrenman, K., Pietrzkowski, Z., Kowalska, M.A., Gewirtz, A.M., Emerson, S.G. and Ratajczak, M.Z. (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97: 3075–3085.
- Naug, H.L., Browning, J., Gole, G.A. and Gobe, G. (2000) Vitreal macrophages express vascular endothelial growth factor in oxygen-induced retinopathy. Clin Experiment Ophthalmol 28: 48–52.
- Niwa, H., Miyazaki, J. and Smith, A.G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24: 372–376.
- Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D.M., Leri, A. and Anversa, P. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705.
- Otani, A., Kinder, K., Ewalt, K., Otero, F.J., Schimmel, P. and Friedlander, M. (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8: 1004–1010.
- Peichev, M., Naiyer, A.J., Pereira, D., Zhu, Z., Lane, W.J., Williams, M., Oz, M.C., Hicklin, D.J., Witte, L., Moore, M.A. and Rafii, S. (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95: 952–958.
- Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.
- Pittenger, M.F. and Martin, B.J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95: 9–20.
- Quirici, N., Soligo, D., Caneva, L., Servida, F., Bossolasco, P. and Deliliers, G.L. (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 115: 186–194.
- Rafii, S. and Lyden, D. (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9: 702–712.
- Rehman, J., Li, J., Orschell, C.M. and March, K.L. (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169.
- Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P.H. and Verfaillie, C.M. (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109: 337–346.
- Risau, W. (1997) Mechanisms of angiogenesis. Nature 386: 671–674.
- Risau, W. and Flamme, I. (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11: 73–91.
- Ruger, B., Giurea, A., Wanivenhaus, A.H., Zehetgruber, H., Hollemann, D., Yanagida, G., Groger, M., Petzelbauer, P., Smolen, J.S., Hoecker, P. and Fischer, M.B. (2004) Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 50: 2157–2166.
- Sahni, A. and Francis, C.W. (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96: 3772–3778.
- Sahni, A., Odrljin, T. and Francis, C.W. (1998) Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273: 7554–7559.
- Sata, M., Saiura, A., Kunisato, A., Tojo, A., Okada, S., Tokuhisa, T., Hirai, H., Makuuchi, M., Hirata, Y. and Nagai, R. (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8: 403–409.
- Schatteman, G.C., Hanlon, H.D., Jiao, C., Dodds, S.G. and Christy, B.A. (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106: 571–578.
- Schmeisser, A., Garlichs, C.D., Zhang, H., Eskafi, S., Graffy, C., Ludwig, J., Strasser, R.H. and Daniel, W.G. (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49: 671–680.
- Shi, Q., Rafii, S., Wu, M.H., Wijelath, E.S., Yu, C., Ishida, A., Fujita, Y., Kothari, S., Mohle, R., Sauvage, L.R., Moore, M.A., Storb, R.F. and Hammond, W.P. (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92: 362–367.
- Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., Sasaki, K., Shimada, T., Oike, Y. and Imaizumi, T. (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776–2779.
- Simons, M. (2005) Angiogenesis: where do we stand now? Circulation 111: 1556–1566.
- Skalak, T.C. (2005) Angiogenesis and microvascular remodeling: a brief history and future roadmap. Microcirculation 12: 47–58.
- Tan, S.T., Hasan, Q., Velickovic, M., Ruger, B.M., Davis, R.P. and Davis, P.F. (2000) A novel in vitro human model of hemangioma. Mod Pathol 13: 92–99.
- Urbich, C., Heeschen, C., Aicher, A., Dernbach, E., Zeiher, A.M. and Dimmeler, S. (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108: 2511–2516.