Looking beneath the surface of the CYP3A5 polymorphism
Gilbert J. Burckart,
Gilbert J. Burckart
Professor of Pharmacy, University of Southern California, Los Angeles, CA, USA.Tel.: +1 323 442 2252Fax: +1 323 442 2250E-mail: [email protected]
Search for more papers by this authorGilbert J. Burckart,
Gilbert J. Burckart
Professor of Pharmacy, University of Southern California, Los Angeles, CA, USA.Tel.: +1 323 442 2252Fax: +1 323 442 2250E-mail: [email protected]
Search for more papers by this authorNo abstract is available for this article.
References
- 1 Ferrarresso M, Tirelli A, Grillo P, Martina V, Edefonte A. Influence of Cyp3a5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant 2006, Doi: 10.1111/j.1399-3046.2006.00688.
- 2 Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001: 27: 383–391.
- 3
Zheng H,
Webber S,
Schuetz E, et al.
Cytochrome P4503A and TNF-α genotypes are associated with tacrolimus dosing in pediatric heart transplant patients.
Hum Immunol
2002: 63 (Suppl. 1): S15.
10.1016/S0198-8859(02)00494-9 Google Scholar
- 4 Zheng H, Webber S, Zeevi A, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 2003: 3: 477–483.
- 5 Burckart GJ, Liu XI. Pharmacogenetics in transplant patients: Can it predict pharmacokinetics and pharmacodynamics? Ther Drug Monit 2006: 28: 23–30.
- 6 MacPhee IA, Fredericks S, Tai T, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation [see comment]. Am J Transplant 2004: 4: 914–919.
- 7 Thompson EE, Kuttab-Boulos H, Witonsky D, et al. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004: 75: 1059–1069.
- 8 Givens RC, Lin YS, Dowling AL, et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003: 95: 1297–1300.
- 9 Ho H, Pinto A, Hall SD, et al. Association between the CYP3A5 genotype and blood pressure. Hypertension 2005: 45: 294–298.
- 10 Wang J, Zeevi A, McCurry K, et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 nonexpressors. Transpl Immunol 2006: 15: 235–240.
- 11 Zheng HX, Zeevi A, McCurry K, et al. The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients. Transpl Immunol 2005: 14: 37–42.
- 12 Grinyo J, Vanrenterghem Y, Nashan B, et al. Association of three polymorphisms with acute rejection after kidney transplantation: An exploratory pharmacogenetic analysis of a randomized multicenter clinical trial (the Caesar Study). Transplantation 2006: 82 (Suppl. 3): 410–411.
- 13 Asano T, Takahashi KA, Fujioka M, et al. ABCB1 C3435T and G2677T/A polymorphism decreased the risk for steroid-induced osteonecrosis of the femoral head after kidney transplantation. Pharmacogenetics 2003: 13: 675–682.
- 14 Hauser IA, Schaeffeler E, Gauer S, et al. ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol 2005: 16: 1501–1511.
- 15 Yamauchi A, Ieiri I, Kataoka Y, et al. Neurotoxicity induced by tacrolimus after liver transplantation: Relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation 2002: 74: 571–572.
- 16 Meisel P, Giebel J, Kunert-Keil C, et al. MDR1 gene polymorphisms and risk of gingival hyperplasia induced by calcium antagonists. Clin Pharmacol Ther 2006: 79: 62–71.