A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations – I. Methods and application to the Sloan Digital Sky Survey
Corresponding Author
Nikhil Padmanabhan
Department of Physics, Yale University, 260 Whitney Avenue, New Haven, CT, 06520 USA
E-mail: [email protected]Search for more papers by this authorXiaoying Xu
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ, 85721 USA
Search for more papers by this authorDaniel J. Eisenstein
Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA, 02138 USA
Search for more papers by this authorRichard Scalzo
Department of Physics, Yale University, 260 Whitney Avenue, New Haven, CT, 06520 USA
Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston, ACT, 2611 Australia
Search for more papers by this authorAntonio J. Cuesta
Department of Physics, Yale University, 260 Whitney Avenue, New Haven, CT, 06520 USA
Search for more papers by this authorKushal T. Mehta
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ, 85721 USA
Search for more papers by this authorEyal Kazin
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122 Australia
Center for Cosmology and Particle Physics, New York University, 4 Washington Place, NY, 10003 USA
Search for more papers by this authorCorresponding Author
Nikhil Padmanabhan
Department of Physics, Yale University, 260 Whitney Avenue, New Haven, CT, 06520 USA
E-mail: [email protected]Search for more papers by this authorXiaoying Xu
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ, 85721 USA
Search for more papers by this authorDaniel J. Eisenstein
Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA, 02138 USA
Search for more papers by this authorRichard Scalzo
Department of Physics, Yale University, 260 Whitney Avenue, New Haven, CT, 06520 USA
Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston, ACT, 2611 Australia
Search for more papers by this authorAntonio J. Cuesta
Department of Physics, Yale University, 260 Whitney Avenue, New Haven, CT, 06520 USA
Search for more papers by this authorKushal T. Mehta
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ, 85721 USA
Search for more papers by this authorEyal Kazin
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122 Australia
Center for Cosmology and Particle Physics, New York University, 4 Washington Place, NY, 10003 USA
Search for more papers by this authorABSTRACT
We present the first application to density field reconstruction to a galaxy survey to undo the smoothing of the baryon acoustic oscillation (BAO) feature due to non-linear gravitational evolution and thereby improve the precision of the distance measurements possible. We apply the reconstruction technique to the clustering of galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) luminous red galaxy (LRG) sample, sharpening the BAO feature and achieving a 1.9 per cent measurement of the distance to z = 0.35. We update the reconstruction algorithm of Eisenstein et al. to account for the effects of survey geometry as well as redshift-space distortions and validate it on 160 LasDamas simulations. We demonstrate that reconstruction sharpens the BAO feature in the angle averaged galaxy correlation function, reducing the non-linear smoothing scale Σnl from 8.1 to 4.4 Mpc h−1. Reconstruction also significantly reduces the effects of redshift-space distortions at the BAO scale, isotropizing the correlation function. This sharpened BAO feature yields an unbiased distance estimate (<0.2 per cent) and reduces the scatter from 3.3 to 2.1 per cent. We demonstrate the robustness of these results to the various reconstruction parameters, including the smoothing scale, the galaxy bias and the linear growth rate. Applying this reconstruction algorithm to the SDSS LRG DR7 sample improves the significance of the BAO feature in these data from 3.3σ for the unreconstructed correlation function to 4.2σ after reconstruction. We estimate a relative distance scale DV/rs to z = 0.35 of 8.88 ± 0.17, where rs is the sound horizon and is a combination of the angular diameter distance DA and Hubble parameter H. Assuming a sound horizon of 154.25 Mpc, this translates into a distance measurement DV(z = 0.35) = 1.356 ± 0.025 Gpc. We find that reconstruction reduces the distance error in the DR7 sample from 3.5 to 1.9 per cent, equivalent to a survey with three times the volume of SDSS.
REFERENCES
- Abazajian K. N. et al., 2009, ApJS, 182, 543
- Angulo R. E., Baugh C. M., Frenk C. S., Lacey C. G., 2008, MNRAS, 383, 755
10.1111/j.1365-2966.2007.12587.x Google Scholar
- Balay S., Gropp W. D., McInnes L. C., Smith B. F., 1997, in E. Arge, A. M. Bruaset, H. P. Langtangen, eds, Modern Software Tools in Scientific Computing. Birkhäuser Press, Cambridge, MA, p. 163
- Balay S. et al., 2011a, PETSc Users Manual. Tech. Rep. ANL-95/11-Revision 3.2, Argonne National Laboratory
- Balay S. et al., 2011b, PETSc, http://www.mcs.anl.gov/petsc
- Beutler F. et al., 2011, MNRAS, 416, 3017
- Blake C., Glazebrook K., 2003, ApJ, 594, 665
- Blake C., Collister A., Bridle S., Lahav O., 2007, MNRAS, 374, 1527
- Blake C. et al., 2011a, MNRAS, 415, 2892
- Blake C. et al., 2011b, MNRAS, 418, 1707
- Bond J. R., Efstathiou G., 1984, ApJ, 285, L45
- Bond J. R., Efstathiou G., 1987, MNRAS, 226, 655
- Carroll S. M., Press W. H., Turner E. L., 1992, ARA&A, 30, 499
- Chuang C.-H., Wang Y., 2012, MNRAS, 426, 226
- Cole S. et al., 2005, MNRAS, 362, 505
- Crocce M., Scoccimarro R., 2008, Phys. Rev. D, 77, 023533
- Drinkwater M. J. et al., 2010, MNRAS, 401, 1429
- Efstathiou G., Bond J. R., 1999, MNRAS, 304, 75
- Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
- Eisenstein D. J., Hu W., Tegmark M., 1998, ApJ, 504, L57
- Eisenstein D. J. et al., 2001, AJ, 122, 2267
- Eisenstein D. J. et al., 2005, ApJ, 633, 560
- Eisenstein D. J., Seo H.-J., Sirko E., Spergel D. N., 2007a, ApJ, 664, 675
10.1086/518712 Google Scholar
- Eisenstein D. J., Seo H.-J., White M., 2007b, ApJ, 664, 660
- Eisenstein D. J. et al., 2011, AJ, 142, 72
- Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
- Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D. P., 1996, AJ, 111, 1748
- Gaztañaga E., Cabré A., Castander F., Crocce M., Fosalba P., 2009a, MNRAS, 399, 801
- Gaztañaga E., Cabré A., Hui L., 2009b, MNRAS, 399, 1663
- Goldberg D. M., Strauss M. A., 1998, ApJ, 495, 29
- Gunn J. E. et al., 1998, AJ, 116, 3040
- Gunn J. E. et al., 2006, AJ, 131, 2332
- Guzik J., Bernstein G., Smith R. E., 2007, MNRAS, 375, 1329
- Hamilton A. J. S., 1998, in D. Hamilton, ed., Astrophysics and Space Science Library, Vol. 231, The Evolving Universe. Kluwer Academic Publisher, Dordrecht, p. 185
- Hill G. J. et al., 2008, in T. Kodama, T. Yamada, K. Aoki, eds, ASP Conf. Ser. Vol. 399, Panoramic Views of Galaxy Formation and Evolution. Astron. Soc. Pac., San Francisco, p. 115
- Ho S. et al., 2012, preprint (arXiv:1201.2137)
- Hoffman Y., Ribak E., 1991, ApJ, 380, L5
- Hogg D. W., Finkbeiner D. P., Schlegel D. J., Gunn J. E., 2001, AJ, 122, 2129
- Hu W., Haiman Z., 2003, Phys. Rev. D, 68, 063004
- Hu W., Sugiyama N., 1996, ApJ, 471, 542
- Hu W., Sugiyama N., Silk J., 1997, Nat, 386, 37
- Huff E., Schulz A. E., White M., Schlegel D. J., Warren M. S., 2007, Astropart. Phys., 26, 351
- Ivezić Ž. et al., 2004, Astron. Nachr., 325, 583
- Jeong D., Komatsu E., 2006, ApJ, 651, 619
- Kaiser N., 1987, MNRAS, 227, 1
10.1093/mnras/227.1.1 Google Scholar
- Kazin E. A. et al., 2010, ApJ, 710, 1444
- Komatsu E. et al., 2011, ApJS, 192, 18
- Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
- Laureijs R. et al., 2011, preprint (arXiv:1110.3193)
- Linder E. V., 2003, Phys. Rev. D, 68, 083504
- Linder E. V., 2005, Phys. Rev. D, 72, 043529
- Matsubara T., 2008a, Phys. Rev. D, 77, 063530
- Matsubara T., 2008b, Phys. Rev. D, 78, 083519
- Mehta K. T., Seo H.-J., Eckel J., Eisenstein D. J., Metchnik M., Pinto P., Xu X., 2011, ApJ, 734, 94
- Mehta K., Cuesta A. J., Xu X., Eisenstein D. J., Padmanabhan N., 2012, MNRAS, 427, 2168 (this issue) (Paper III)
- Meiksin A., White M., Peacock J. A., 1999, MNRAS, 304, 851
- Noh Y., White M., Padmanabhan N., 2009, Phys. Rev. D, 80, 123501
- Nusser A., Davis M., 1994, ApJ, 421, L1
10.1086/187172 Google Scholar
- Padmanabhan N., White M., 2009, Phys. Rev. D, 80, 063508
- Padmanabhan N., Seljak U., Pen U. L., 2003, New Astron., 8, 581
- Padmanabhan N. et al., 2007, MNRAS, 378, 852
10.1111/j.1365-2966.2007.11593.x Google Scholar
- Padmanabhan N. et al., 2008, ApJ, 674, 1217
- Padmanabhan N., White M., Cohn J. D., 2009, Phys. Rev. D, 79, 063523
- Peebles P. J. E., Yu J. T., 1970, ApJ, 162, 815
- Percival W. J., Cole S., Eisenstein D. J., Nichol R. C., Peacock J. A., Pope A. C., Szalay A. S., 2007, MNRAS, 381, 1053
- Percival W. J. et al., 2010, MNRAS, 401, 2148
- Pier J. R., Munn J. A., Hindsley R. B., Hennessy G. S., Kent S. M., Lupton R. H., Ivezić Ž., 2003, AJ, 125, 1559
- Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, in W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, eds, Numerical Recipes in C. The Art of Scientific Computing. Cambridge Univ. Press Cambridge
- Reid B. A. et al., 2010, MNRAS, 404, 60
- Ross A. J. et al., 2011, MNRAS, 417, 1350
- Ross A. J. et al., 2012, MNRAS, 424, 564
- Sakharov A. D., 1966, Sov. J. Exp. Theor. Phys., 22, 241
- Sawangwit U., Shanks T., Abdalla F. B., Cannon R. D., Croom S. M., Edge A. C., Ross N. P., Wake D. A., 2011, MNRAS, 416, 3033
- Schlegel D., White M., Eisenstein D., 2009, Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers, no. 314
- Schlegel D. et al., 2011, preprint (arXiv:1106.1706)
- Scoccimarro R., 2004, Phys. Rev. D, 70, 083007
- Seo H.-J., Eisenstein D. J., 2003, ApJ, 598, 720
- Seo H.-J., Siegel E. R., Eisenstein D. J., White M., 2008, ApJ, 686, 13
- Seo H.-J. et al., 2010, ApJ, 720, 1650
- Seo H.-J. et al., 2012, ApJ, in press (arXiv:1201.2172)
- Smith J. A. et al., 2002, AJ, 123, 2121
- Smith R. E., Scoccimarro R., Sheth R. K., 2008, Phys. Rev. D, 77, 043525
- Strauss M. A. et al., 2002, AJ, 124, 1810
- Sunyaev R. A., Zeldovich Y. B., 1970, Ap&SS, 7, 3
- Tegmark M., 1997, Phys. Rev. Lett., 79, 3806
- Tucker D. L. et al., 2006, Astron. Nachr., 327, 821
- Weinberg D. H., Mortonson M. J., Eisenstein D. J., Hirata C., Riess A. G., Rozo E., 2012, Phys. Rep., submitted (arXiv:1201.2434)
- Xu X., Padmanabhan N., Eisenstein D. J., Mehta K. T., Cuesta A. J., 2012, MNRAS, 427, 2146 (this issue) (Paper II)
- York D. G. et al., 2000, AJ, 120, 1579
- Zaroubi S., Hoffman Y., Fisher K. B., Lahav O., 1995, ApJ, 449, 446
- Zel'dovich Y. B., 1970, A&A, 5, 84