A multi-objective second-order optimal design for deforming networks
Peiliang Xu
Department of Geodetic Science, Stuttgart University, Keplerstrasse 11, 70174 Stuttgart, Germany
Search for more papers by this authorErik Grafarend
Department of Geodetic Science, Stuttgart University, Keplerstrasse 11, 70174 Stuttgart, Germany
Search for more papers by this authorPeiliang Xu
Department of Geodetic Science, Stuttgart University, Keplerstrasse 11, 70174 Stuttgart, Germany
Search for more papers by this authorErik Grafarend
Department of Geodetic Science, Stuttgart University, Keplerstrasse 11, 70174 Stuttgart, Germany
Search for more papers by this authorSUMMARY
To determine displacement and strain fields accurately and reliably, we need to specify several quality arguments to design deforming networks optimally. The purpose of this study is to investigate optimal design problems of deforming networks from the viewpoint of multi-objective optimal theory. Based on accuracy, reliability and the character of a deformation model, a multi-objective optimal technique has been developed for designing a 3-D deforming network. It simultaneously takes into account optimal designs of displacement vectors and principal strain components. A criterion matrix for the principal components of strain is constructed. Numerical results are discussed in terms of objective function values, error ellipsoids of displacement vectors and principal components of strain.
References
-
Baarda, W., 1968. A testing procedure for use in geodetic networks, Neth. Geod. Comm. (Delft), Publ. Geod., Vol. 2, No. 5.
10.54419/t8w4sg Google Scholar
- Baarda, W., 1973. S-transformations and criterion matrices, Neth. Geod. Comm., Publ. Geod. (Delft), Vol. 5, No. 1.
- Bilham, R., 1991. Earthquakes and sea level: space and terrestrical metrology on a changing planet, Rev. Geophys., 29, 1–29.
- Chen, Y.Q., Kavouras, M. & Secord, J.M., 1983. Design considerations in deformation monitoring, in Proc. FIG XVII Int. Congress, Sofia, pp. 608. 2/1–14.
- Chrzanowski, A. & Chen, Y.Q., 1990. Deformation monitoring, analysis, and prediction—status report, in Proc. FIG XIX Int. Congress, Helsinki , Vol. 6, pp. 84–97.
- Chrzanowski, A., Chen, Y.Q. & Secord, J.M., 1983. On the strain analysis of tectonic movements using fault crossing geodetic surveys, Tectonophysics, 97, 297–315.
- Cohon, J.L., 1978. Multiobjective Programming and Planning. Academic Press, New York .
-
Crosilla, F., 1985a. A criterion matrix for deforming networks by multifactorial analysis techniques, in
Optimization and Design of Geodetic Networks, pp. 429–435, eds
E. Grafarend &
F. Sanso, Springer Verlag,
Berlin
.
10.1007/978-3-642-70659-2_16 Google Scholar
- Crosilla, F., 1985b. Improved design of a control network for the purpose of a monitoring strain parameters and local rotation. Manuscr. Geod., 10, 102–114.
- Dawe, D.J., 1984. Matrix and Finite Element Displacement Analysis of Structures. Clarendon Press. Oxford .
- Grafarend, E., 1972. Genauigkeitsmasse Geodätischer Netze, A73. Deutsche Geodätische Kommission, Munich .
- Grafarend, E., 1974. Optimization of geodetic networks. Boll. Geod. Sci. Aff., 33, 351–406.
- Grafarend, E., 1975. Second order design of geodetic networks, Zeitschrift für Vermessungswesen, 100, 158–168.
-
Grafarend, E., 1985. Criterion matrices for deforming networks, in
Optimization and Design of Geodetic Networks.
pp. 363–428. eds
E. Grafarend, &
F. Sanso, Springer Verlag.
Berlin
.
10.1007/978-3-642-70659-2_15 Google Scholar
- Grafarend, E., 1986. Three-dimensional deformation analysis: global vector spherical harmonic and local finite element representation. Tectonophysics. 130, 337–359.
-
Grafarend. E. &
Schaffrin, B., 1974. Unbiased free net adjustment.
Surv. Rev., 22, 200–218.
10.1179/003962674791965493 Google Scholar
- Grafarend. E. & Schaffrin. B.., 1979. Kriterion matrizen—I. Zweidimensionale homogene und isotrope geodätischer netze. Zeitschrift für Vermessungswesen. 104, 133–149.
- Grafarend, E., Krumm, F. & Schaffrin, B., 1986. Kriterion matrizen—III. Zweidimensionale homogene und isotrope geodätischer netze, Zeitschrift für Vermessungswesen, III, 197–207.
- Grafarend, E., Heister, H., Kelm, R., Kropff, H. & Schaffrin, B., 1979. Optimierung Geodätischer Messoperatinen, Herbert Wichmann Verlag, Karlsruhe .
- Hirvonen, R.A., 1971. Adjustment by Least Squares in Geodesy and Photogrammetry, Frederick Ungar Publishing Co., New York .
- Koch, K.R., 1978. Hypothesentests bei singulären Ausgleichungsproblemen. Zeitschrift für Vermessungswesen, 103, 1–10.
- Koch, K.R., 1982. Optimisation of the Configuration of Geodetic Networks. Deutsche Geodätische Kommission. Reihe B. No. 258/III. pp. 82–89, Munich .
- Koch, K.R., 1989. Parameterschätzung und Hypothesentests in Linearen Modellen, Dümmler, Bonn .
- Kuang, S.L. & Chrzanowski, A., 1992. Multiobjective optimization design of geodetic networks, Manuscr. Geod., 17, 233–244.
- Miche, C., 1992. A Note on the Computation of Isotropic Tensor Functions. IBNM-Bericht 92/4, The University of Hannover, Hannover .
- Müller, H., 1986. Zur Berücksichtigung der Zuverlässigkeit bei der Gewichtsoptimierung geodätischer Netze. ZfV. III, 157–169.
- The People's University, 1987. Introduction to Operations Research, The Press of the People's University, Beijing (in Chinese).
- Sawaragi, Y., Nakayama, H. & Tanino, T., 1985. Theory of Multiobjective Optimization, Academic Press, Orlando .
-
Schaffrin, B., 1985. Aspects of network design, in
Optimisation and Design of Geodetic Networks, pp. 548–597, eds
E. Grafarend, &
F. Sanso, Springer Verlag,
Berlin
.
10.1007/978-3-642-70659-2_19 Google Scholar
- Schaffrin, B. & Grafarend, E., 1982. Kriterion matrizen—II. Zweidimensionale homogene und isotrope geodätischer Netze, Zeitschrift für Vermessungswesen, 107, 183–194, 485–493.
-
Schmitt, G., 1985. Second order design, in
Optimization and Design of Geodetic Networks, pp. 74–121, eds
E. Grafarend, &
F. Sanso, Springer Verlag,
Berlin
.
10.1007/978-3-642-70659-2_5 Google Scholar
-
Sprinsky, W., 1978. Improvement of parameter accuracy by choice and quality of observations, Bull. Geod., 52, 269–279.
10.1007/BF02521828 Google Scholar
- Szidarovszky, F., Gershon, M. & Duckstein, L.., 1986. Techniques for Multiobjective Decision Making in Systems Management, Elsevier Science Publishers, Amsterdam .
- Tao, H.X. & Jiang, Y., 1990. Die dynamische Optimierung von mehreren zielfunktionen zur berücksichtigung mehrerer qualitätskriterien des überwachungsnetzes, in Proc. FIG XIX Int. Congress Surv. Helsinki, Vol. 6, pp. 406–415.
- Welsch, W., 1989. Zur optimierung geodätischer netze für die überwachung rezenter verwerfungen, in Rezente Krustenbewegungen, Heft 39, pp. 191–212, eds N. Kersting, & W. Welsch, Univ. Bundeswehr München.
- Wimmer, H., 1982. Second Order Design of Geodetic Networks by an Iterative Approximation of a Given Criterion Matrix, Deutsche Geodätische Kommission, Reihe B, Report 258/III, pp. 112–127, Munich .
- Wolf, H., 1970. Polarität und optimierung bei freien und eingeschalteten geodätischen netzen, Allgemeine Vermessungsnachrichten, 77, 291–298.
- Xu, P.L., 1987. An extended method for analyzing deformation of large dams, Acta Geod. Catogr. Sin., 16, 280–288.
-
Xu, P.L., 1989a. Multiobjective optimal second order design of networks, Bull. Geod., 63, 297–308.
10.1007/BF02520478 Google Scholar
- Xu, P.L., 1989b. On the combined adjustment of gravity and levelling data, PhD Dissertation, Wuhan Tech. Univ. Surv. Mapping, Wuhan (in Chinese).
- Xu, P.L., 1990. The second order design of geodetic networks using multiobjectivc optimization theory, Boll. Geod. Sci. Aff., 49, 185–194.
- Xu, P.L., 1993. Multiobjective second order optimization and criterion matrix design, Boll. Geod. Sci. Aff., 52, 305–323.
- Zhang, Y., 1987. Beiträge zum Entwurf von Optimalen Beobachtungsplänen für Tektonische Überwachungsnetze, Heft 30, Univ. Bundeswehr München.