Localization of collagen mRNA in normal and scleroderma skin by in-situ hybridization
K. SCHARFFETTER
Dermatologische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Frauenlobstr, München, FRG
Search for more papers by this authorB. LANKAT-BUTTGEREIT
Dermatologische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Frauenlobstr, München, FRG
Search for more papers by this authorCorresponding Author
T. KRIEG
Dermatologische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Frauenlobstr, München, FRG
2 Dermatologische Klinik der LMU München, Frauenlobstr. 9–11, 8000 München 2, FRGSearch for more papers by this authorK. SCHARFFETTER
Dermatologische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Frauenlobstr, München, FRG
Search for more papers by this authorB. LANKAT-BUTTGEREIT
Dermatologische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Frauenlobstr, München, FRG
Search for more papers by this authorCorresponding Author
T. KRIEG
Dermatologische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Frauenlobstr, München, FRG
2 Dermatologische Klinik der LMU München, Frauenlobstr. 9–11, 8000 München 2, FRGSearch for more papers by this authorAbstract
Abstract. Scleroderma is a fibrotic disease occurring in a localized or systemic form. Disturbed regulation of connective tissue metabolism plays an important role in its pathogenesis. However, until now, most of the data available were obtained from studies of fibroblasts in culture and there is considerable doubt that fibroblasts in a monolayer reflect the in-vivo situation. Using in-situ hybridization with specific antisense RNAs on frozen sections of skin, cells were detected displaying enhanced messenger RNA levels for type I and type III collagen in patients with localized and systemic scleroderma. Activated fibroblastic cells were often located near blood vessels in the deep dermis of patients with early stages of the disease and were mostly surrounded by mononuclear cells. These findings are in agreement with the concept that the interaction of fibroblasts with ‘immunocompetent cells’ is crucial in the initial activation of connective tissue metabolism in fibrosis.
Abbreviations:
-
- DTT
-
- Dithiothreitol
-
- SDS
-
- sodium dodecy lsulphate
-
- bp
-
- basepair.
References
- 1 Rodnan GP, Jablonska S, Medsger TA. Classification and nomenclature of progressive systemic sclerosis (scleroderma). Clin Rheum Dis 1979; 5: 5–13.
- 2 Fleischmajer R. The pathophysiology of scleroderma. Int J Dermatol 1977: 310–8.
- 3 Rodnan GP, Lipinski I, Luksick J. Skin collagen content in progressive systemic sclerosis (scleroderma) and localized scleroderma. Arthritis Rheum 1979; 22: 130–40.
- 4 Uitto J, Halme J, Hanuselka M, Petrokallio P, Kivirikko KI. Protocollagen proline hydroxylase activity in the skin of normal human subjects and of patients with scleroderma. Scand J Clin Lab Invest 1969; 23: 241–7.
- 5 Krieg T, Müller PK, Goerz G. Fibroblasts from a patient with scleroderma reveal abnormal metabolism. Arch Dermatol Res 1977; 259: 105–7.
- 6 Uitto J, Bauer EA, Eisen AZ. Scleroderma: increased biosynthesis of triplehelical type I and III procollagens associated with unaltered expression of collagenase by skin fibroblasts in culture. J Clin Invest 1979; 64: 921–30.
- 7 LeRoy C. Increased collagen synthesis by scleroderma skin fibroblasts. J Clin Invest 1974; 54: 880–9.
- 8 Wahl SM. The role of lymphokines and monokines in fibrosis. In: R Fleischmajer, B Olsen, K Kühn, eds. Biology, Chemistry and Pathology of Collagen. New York : The New York Academy of Science, 1986: 404–29.
- 9 Norton WL, Nardo JM. Vascular disease in progressive systemic sclerosis (scleroderma). Ann Intern Med 1970; 73: 317–24.
- 10 Fleischmajer R, Perlish JS, Reeves JTR. Cellular infiltrates in scleroderma skin. Arthritis Rheum 1977; 20: 975–84.
- 11 Fleischmajer R, Daminano V, Nedwich A. Scleroderma and the subcutaneous tissue. Science 1971; 171: 1019–21.
- 12 Fleischmajer R, Perlish JS, Dessau W et al. Immunofluorescence analysis of collagen, fibronectin and basement membrane protein in scleroderma skin. J Invest Dermatol 1980; 75: 270–4.
- 13 Fleischmajer R, Perlish JS, Krieg T, Timpl R. Variability in collagen and fibronectin synthesis by scleroderma fibroblasts in primary culture. J Invest Dermatol 1981; 76: 400–3.
- 14 Kähari V, Vuorio T, Nänto-Sälonen K, Vuorio EL. Increased type I collagen mRNA levels in cultured scleroderma fibroblasts. Biochim Biophys Acta 1984; 781: 183–6.
- 15 Cox KH, DeLeon DV, Angerer LM, Angerer RC. Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Develop Biol 1984; 101: 485–502.
- 16 Harper M, Marselle C, Gallo R, Wong-Staal F. Detection of lymphocytes expressing T-lymphotrophic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci USA 1986; 83: 772–6.
- 17 Hayashi M, Ninomia Y, Parson J, Hayashi K, Olsen BR, Trelsted RL. Differential localization of mRNAs of collagen types I and chick fibroblasts, chondrocytes and corneal cells by in situ hybridization using cDNA probes. J Cell Biol 1986; 102: 2302–9.
- 18 Sandberg M, Vuorio E. Localization of types I, II and III collagen mRNAs developing human skeletal tissues by in situ hybridization. Cell Biol 1987; 104: 1077–84.
- 19 Sandmeier S, Smith R, Kiehn R, Bornstein P. Correlation of collagen synthesis and procollagen messenger RNA levels with transformation in rat embryo fibroblasts. Cancer Res 1981; 41: 830–8.
- 20 Rowe LB, Schwarz RJ. Role of procollagen mRNA levels in controlling the rate of procollagen synthesis. Mol Cell Biol 1983; 3: 241–9.
- 21 Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Preliminary criteria for the classification of systemic sclerosis (scleroderma) Arthritis Rheum 1980; 23: 581–90.
- 22 Chu ML, Myers JC, Bernhard MP, Ding JF, Ramirez F. Cloning and characterization of five overlapping cDNA specific for the human pro (I) collagen chain. Nucl Acid Res 1982; 10: 5925–34.
- 23 Misculin M, Dalgleish R, Kluve-Beckermann B et al. Human type III collagen gene expression is coordinately modulated with type I collagen genes during fibroblast growth. Biochemistry 1985; 25: 1408–13.
- 24 Maniatis T, Frisch EF, Sambrook J. Molecular Cloning. Cold Spring Habor Laboratory, New York , 1982.
- 25 Martin GR, Timpl R, Müller PK, Kühn K. The genetically distinct collagens. Trends Biochem Sci 1985; 10: 285–7.
- 26 Krieg T, Hörlein D, Wiestner M, Müller PK. Aminoterminal extension peptides from type I procollagen normalize extensive collagen synthesis of scleroderma fibroblasts. Arch Dermatol Res 1978, 263: 171–80.
- 27 Weber L, Mauch C, Kirsch E, Müller PK, Krieg T. Modulation of collagen type I and III synthesis in organ and in cell culture of fibroblasts. J Invest Dermatol 1986; 87: 217–20.
- 28 Nüsgens B, Merrill C, Lapiere C, Bell E. Collagen biosynthesis by cells in a tissue equivalent matrix in vivo. Coll Relat Res 1984; 4: 351–64.
- 29 Mauch C. Zell-Matrix-Wechselwitkung von Fibroblasten physiologische und pathophysiologische Aspekte. Ph.D. Thesis, University of Regensburg, 1986.
- 30 Fleischmajer R, Gay S, Meigel WN, Perlish JS. Collagen in the cellular and fibrotic stages of scleroderma. Arthritis Rheum 1978; 21: 418–28.
- 31 Fleischmajer R, Perlish JS, West WP. Ultrastructure of cutaneous cellular infiltrates in scleroderma. Arch Dermatol 1977; 113: 1661–6.
- 32 DeLustro F, Mackel AM, DeLustro B, LeRoy EC. Human monocyte regulation of connective tissue growth. Am Zool 1983; 23: 213–20.
- 33 Krieg T, Luderschmidt C, Weber L, Müller PK, Braun-Falco O. Scleroderma fibroblasts: some aspects of in vitro assessment of collagen synthesis. Arch Dermatol Res 1981; 270: 263–72.