Trinucleotide repeat dynamic mutation identifying susceptibility in familial and sporadic chronic lymphocytic leukaemia
Rebecca L. Auer
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorGuillaume Dighiero
Unite d'Immuno-hematologie et d'Immunopathologie, Institut Pasteur, Paris, France
Search for more papers by this authorLynn R. Goldin
Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
Search for more papers by this authorDenise Syndercombe-Court
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorChristopher Jones
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorSuzanne McElwaine
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorAdrian C. Newland
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorChristopher D. Fegan
Department of Haematology, Cardiff and Vale NHS Trust, Cardiff, UK
Search for more papers by this authorNeil Caporaso
Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
Search for more papers by this authorFinbarr E. Cotter
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorRebecca L. Auer
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorGuillaume Dighiero
Unite d'Immuno-hematologie et d'Immunopathologie, Institut Pasteur, Paris, France
Search for more papers by this authorLynn R. Goldin
Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
Search for more papers by this authorDenise Syndercombe-Court
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorChristopher Jones
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorSuzanne McElwaine
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorAdrian C. Newland
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorChristopher D. Fegan
Department of Haematology, Cardiff and Vale NHS Trust, Cardiff, UK
Search for more papers by this authorNeil Caporaso
Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
Search for more papers by this authorFinbarr E. Cotter
Centre for Haematology, Institute of Cell and Molecular Science, Bart's & The London Queen Mary School of Medicine, London, UK
Search for more papers by this authorSummary
Chronic lymphocytic leukaemia (CLL) has a strong hereditary component, but an understanding of predisposition genes is poor. Anticipation with familial CLL has been reported, although the molecular mechanism is unknown. Expansion of trinucleotide repeat sequences underlies anticipation observed in neurodegenerative disease. A polymerase chain reaction-based assay was used to analyse the stability of ten CCG- and CAG-trinucleotide repeat tracts in 18 CLL families and 140 patients with the sporadic form of the disease. The study suggests that anticipation, if it occurs in CLL, is not linked to CCG- and CAG-repeat expansion, however, variation in repeat length at certain loci (FRA16A) may permit identification of susceptible family members. In addition, polymorphisms with prognostic significance were identified. These were high length (but not expanded) repeats at FRA11B (P = 0·01), ATXN1 (P = 0·032) and ATXN3 (P = 0·022), all associated with poor risk disease.
References
- Auer, R.L., Jones, C., Mullenbach, R.A., Syndercombe-Court, D., Milligan, D.W., Fegan, C.D. & Cotter, F.E. (2001) Role for CCG-trinucleotide repeats in the pathogenesis of chronic lymphocytic leukemia. Blood, 97, 509–515.
- Benzow, K.A., Koob, M.D., Condie, A., Catovsky, D., Matutes, E., Yuille, M.R. & Houlston, R.S. (2002) Instability of CAG-trinucleotide repeats in chronic lymphocytic leukemia. Leukemia & Lymphoma, 43, 1987–1990.
- Brais, B., Bouchard, J.P., Xie, Y.G., Rochefort, D.L., Chretien, N., Tome, F.M., Lafreniere, R.G., Rommens, J.M., Uyama, E., Nohira, O., Blumen, S., Korczyn, A.D., Heutink, P., Mathieu, J., Duranceau, A., Codere, F., Fardeau, M. & Rouleau, G.A. (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nature Genetics, 18, 164–167.
- Brook, J.D., McCurrach, M.E., Harley, H.G., Buckler, A.J., Church, D., Aburatani, H., Hunter, K., Stanton, V.P., Thirion, J.P., Hudson, T., Sohn, R., Zemelman, B., Snell, R.G., Rundle, S.A., Crow, S., Davies, J., Shelbourne, P., Buxton, J., Jones, C., Juvonen, V., Johnson, K., Harper, P.S., Shaw, D.J. & Housman, D.E. (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell, 68, 799–808.
- Capalbo, S., Trerotoli, P., Ciancio, A., Battista, C., Serio, G. & Liso, V. (2000) Increased risk of lymphoproliferative disorders in relatives of patients with B-cell chronic lymphocytic leukemia: relevance of the degree of familial linkage. European Journal of Haematology, 65, 114–117.
- Catovsky, D. (1997) The search for genetic clues in chronic lymphocytic leukemia. Hematology Cell Therapy, 39 (Suppl. 1), S5–S11.
- Chang, B.L., Zheng, S.L., Hawkins, G.A., Isaacs, S.D., Wiley, K.E., Turner, A., Carpten, J.D., Bleecker, E.R., Walsh, P.C., Trent, J.M., Meyers, D.A., Isaacs, W.B. & Xu, J. (2002) Polymorphic GGC repeats in the androgen receptor gene are associated with hereditary and sporadic prostate cancer risk. Human Genetics, 110, 122–129.
- Daugherty, S.E., Pfeiffer, R.M., Mellemkjaer, L., Hemminki, K. & Goldin, L.R. (2005) No evidence for anticipation in lymphoproliferative tumors in population-based samples. Cancer Epidemiology Biomarkers & Prevention, 14, 1245–1250.
- De Lord, C., Powles, R., Mehta, J., Wilson, K., Treleaven, J., Meller, S. & Catovsky, D. (1998) Familial acute myeloid leukaemia: four male members of a single family over three consecutive generations exhibiting anticipation. British Journal of Haematology, 100, 557–560.
-
Edwards, S.M.,
Badzioch, M.D.,
Minter, R.,
Hamoudi, R.,
Collins, N.,
Ardern-Jones, A.,
Dowe, A.,
Osborne, S.,
Kelly, J.,
Shearer, R.,
Easton, D.F.,
Saunders, G.F.,
Dearnaley, D.P. &
Eeles, R.A. (1999) Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival.
International Journal of Cancer, 84, 458–465.
10.1002/(SICI)1097-0215(19991022)84:5<458::AID-IJC2>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- Ferro, P., Dell'Eva, R. & Pfeffer, U. (2001) Are there CAG repeat expansion-related disorders outside the central nervous system? Brain Research Bulletin, 56, 259–264.
- Fraser, F.C. (1997) Trinucleotide repeats not the only cause of anticipation. Lancet, 350, 459–460.
- Ginsberg, D., Vairo, G., Chittenden, T., Xiao, Z.X., Xu, G., Wydner, K.L., DeCaprio, J.A., Lawrence, J.B. & Livingston, D.M. (1994) E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes & Development, 8, 2665–2679.
- Giovannucci, E., Stampfer, M.J., Krithivas, K., Brown, M., Dahl, D., Brufsky, A., Talcott, J., Hennekens, C.H. & Kantoff, P.W. (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 94, 3320–3323.
- Goldin, L.R., Sgambati, M., Marti, G.E., Fontaine, L., Ishibe, N. & Caporaso, N. (1999) Anticipation in familial chronic lymphocytic leukemia. American Journal of Human Genetics, 65, 265–269.
- Horwitz, M. (1997) The genetics of familial leukemia. Leukemia, 11, 1347–1359.
- Horwitz, M., Goode, E.L. & Jarvik, G.P. (1996) Anticipation in familial leukemia. American Journal of Human Genetics, 59, 990–998.
- Horwitz, M., Benson, K.F., Li, F.Q., Wolff, J., Leppert, M.F., Hobson, L., Mangelsdorf, M., Yu, S., Hewett, D., Richards, R.I. & Raskind, W.H. (1997) Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21–23.2. American Journal of Human Genetics, 61, 873–881.
- Jones, C., Penny, L., Mattina, T., Yu, S., Baker, E., Voullaire, L., Langdon, W.Y., Sutherland, G.R., Richards, R.I. & Tunnacliffe, A. (1995) Association of a chromosome deletion syndrome with a fragile site within the proto-oncogene CBL2. Nature, 376, 145–149.
- Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., Akiguchi, I., Kimura, J., Narumiya, S. & Kakizuka, A. (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genetics, 8, 221–228.
- Kenneson, A., Zhang, F., Hagedorn, C.H. & Warren, S.T. (2001) Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Human Molecular Genetics, 10, 1449–1454.
- King, B.L., Peng, H.Q., Goss, P., Huan, S., Bronson, D., Kacinski, B.M. & Hogg, D. (1997) Repeat expansion detection analysis of (CAG)n tracts in tumor cell lines, testicular tumors, and testicular cancer families. Cancer Research, 57, 209–214.
- Kremer, E.J., Pritchard, M., Lynch, M., Yu, S., Holman, K., Baker, E., Warren, S.T., Schlessinger, D., Sutherland, G.R. & Richards, R.I. (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p (CCG)n. Science, 252, 1711–1714.
- La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 352, 77–79.
- Nagafuchi, S., Yanagisawa, H., Sato, K., Shirayama, T., Ohsaki, E., Bundo, M., Takeda, T., Tadokoro, K., Kondo, I., Murayama, N., Tanaka, Y., Kikushima, H., Umino, K., Kurosawa, H., Furukawa, T., Nihei, K., Inoue, T., Sano, T., Komure, O., Takahashi, M., Yoshizawa, I., Kanazawa, I. & Yamada, M. (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genetics, 6, 14–18.
- Nancarrow, J.K., Kremer, E., Holman, K., Eyre, H., Doggett, N.A., Le Paslier, D., Callen, D.F., Sutherland, G.R. & Richards, R.I. (1994) Implications of FRA16A structure for the mechanism of chromosomal fragile site genesis. Science, 264, 1938–1941.
- Nelson, K.A. & Witte, J.S. (2002) Androgen receptor CAG repeats and prostate cancer. American Journal of Epidemiology, 155, 883–890.
- Orr, H.T., Chung, M.Y., Banfi, S., Kwiatkowski, Jr, T.J., Servadio, A., Beaudet, A.L., McCall, A.E., Duvick, L.A., Ranum, L.P. & Zoghbi, H.Y. (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genetics, 4, 221–226.
- Parrish, J.E., Oostra, B.A., Verkerk, A.J., Richards, C.S., Reynolds, J., Spikes, A.S., Shaffer, L.G. & Nelson, D.L. (1994) Isolation of a GCC repeat showing expansion in FRAXF, a fragile site distal to FRAXA and FRAXE. Nature Genetics, 8, 229–235.
- Pfeffer, U., Ferro, P., Pavia, V., Trombino, S., Dell'Eva, R., Merlo, G. & Levi, G. (2001) The coding region of the human DLX6 gene contains a polymorphic CAG/CCG repeat. International Journal of Oncology, 18, 1293–1297.
- Rebbeck, T.R., Kantoff, P.W., Krithivas, K., Neuhausen, S., Blackwood, M.A., Godwin, A.K., Daly, M.B., Narod, S.A., Garber, J.E., Lynch, H.T., Weber, B.L. & Brown, M. (1999) Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. American Journal of Human Genetics, 64, 1371–1377.
- Richards, R.I., Crawford, J., Narahara, K., Mangelsdorf, M., Friend, K., Staples, A., Denton, M., Easteal, S., Hori, T.A., Kondo, I., Jenkins, T., Goldman, A., Panich, V., Ferakova, E. & Sutherland, G.R. (1996) Dynamic mutation loci: allele distributions in different populations. Annals of Human Genetics, 60, 391–400.
- Richetta, A., Ottini, L., Falchetti, M., Innocenzi, D., Bottoni, U., Faiola, R., Mariani-Costantini, R. & Calvieri, S. (2001) Instability at sequence repeats in melanocytic tumours. Melanoma Research, 11, 283–289.
-
Sasaki, M.,
Dahiya, R.,
Fujimoto, S.,
Ishikawa, M. &
Oshimura, M. (2000) The expansion of the CAG repeat in exon 1 of the human androgen receptor gene is associated with uterine endometrial carcinoma.
Molecular Carcinogenesis, 27, 237–244.
10.1002/(SICI)1098-2744(200003)27:3<237::AID-MC11>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- Shah, N.P., Witte, O.N. & Denny, C.T. (1991) Characterization of the BCR promoter in Philadelphia chromosome-positive and -negative cell lines. Molecular and Cellular Biology, 11, 1854–1860.
- Stanford, J.L., Just, J.J., Gibbs, M., Wicklund, K.G., Neal, C.L., Blumenstein, B.A. & Ostrander, E.A. (1997) Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Research, 57, 1194–1198.
- Strissel, P.L., Strick, R., Tomek, R.J., Roe, B.A., Rowley, J.D. & Zeleznik-Le, N.J. (2000) DNA structural properties of AF9 are similar to MLL and could act as recombination hot spots resulting in MLL/AF9 translocations and leukemogenesis. Human Molecular Genetics, 9, 1671–1679.
- Sutherland, G.R. & Richards, R.I. (1995) Simple tandem DNA repeats and human genetic disease. Proceedings of the National Academy of Sciences of the United States of America, 92, 3636–3641.
- The Huntington's Disease Collaborative Research Group. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 72, 971–983.
- Walker, G.J., Walters, M.K., Palmer, J.M. & Hayward, N.K. (1994) The MLLT3 gene maps between D9S156 and D9S171 and contains an unstable polymorphic trinucleotide repeat. Genomics, 20, 490–491.
- Wiernik, P.H., Ashwin, M., Hu, X.P., Paietta, E. & Brown, K. (2001) Anticipation in familial chronic lymphocytic leukaemia. British Journal of Haematology, 113, 407–414.
- Yuille, M.R., Houlston, R.S. & Catovsky, D. (1998) Anticipation in familial chronic lymphocytic leukaemia. Leukemia, 12, 1696–1698.
- Yuille, M.R., Matutes, E., Marossy, A., Hilditch, B., Catovsky, D. & Houlston, R.S. (2000) Familial chronic lymphocytic leukaemia: a survey and review of published studies. British Journal of Haematology, 109, 794–799.