Engagement of Penicillium marneffei conidia with multiple pattern recognition receptors on human monocytes
Yuttana Srinoulprasert
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorPiyapong Pongtanalert
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorRunglawan Chawengkirttikul
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorSansanee C. Chaiyaroj
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorYuttana Srinoulprasert
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorPiyapong Pongtanalert
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorRunglawan Chawengkirttikul
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorSansanee C. Chaiyaroj
Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
Search for more papers by this authorABSTRACT
P. marneffei is a thermal dimorphic fungus which causes penicilliosis, an opportunistic infection in immunocompromised patients in South and Southeast Asia. Little is known about the innate immune response to P. marneffei infection. Therefore, the initial response of macrophages to P. marneffei conidia was evaluated by us. Adhesion between monocytes from healthy humans and fungal conidia was examined and found to be specifically inhibited by MAbs against PRR, such as MR, (TLR)1, TLR2, TLR4, TLR6, CD14, CD11a, CD11b, and CD18. To study the consequences of these interactions, cytokines were also examined by ELISA. Binding of P. marneffei conidia to monocytes was significantly inhibited, in a dose-dependent manner, by MAbs against MR, TLR1, TLR2, TLR4, TLR6, CD14, CD11b and CD18. When monocytes were co-cultured with the conidia, there was an increase in the amount of surface CD40 and CD86 expression, together with TNF-α and IL-1β production, compared to unstimulated controls. In assays containing anti-TLR4 or anti-CD14 antibody, reduction in the amount of TNF-α released by monocytes stimulated with P. marneffei conidia was detected. In addition, it was found that production of TNF-α and IL-1β from adherent peripheral blood monocytes was partially impaired when heat-inactivated autologous serum, in place of untreated autologous serum, was added to the assay. These results demonstrate that various PRR on human monocytes participate in the initial recognition of P. marneffei conidia, and the engagement of PRR could partly initiate proinflammatory cytokine production.
REFERENCES
- 1 Deng Z., Ribas J.L., Gibson D.W., Connor D.H. (1988) Infections caused by Penicillium marneffei in China and Southeast Asia: review of eighteen published cases and report of four more Chinese cases. Rev Infect Dis 10: 640–652.
- 2 Jushang L., Lequan P., Shaoxi W., Shixiong S., Shaobo S., Lianying S. (1991) Disseminated penicilliosis marneffei in China. Report of three cases. Chin Med J 104: 247–251.
- 3 Cheng N.C., Wong W.W., Fung C.P., Liu C.Y. (1998) Unusual pulmonary manifestations of disseminated Penicillium marneffei infection in three AIDS patients. Med Mycol 36: 429–432.
- 4 Singh P.N., Ranjana K., Singh Y.I., Singh K.P., Sharma S.S., Kulachandra M., Nabakumar Y., Chakrabarti A., Padhye A.A., Kaufman L., Ajello L. (1999) Indigenous disseminated Penicillium marneffei infection in the State of Manipur, India: report of four autochthonous cases. J Clin Microbiol 37: 2699–2702.
- 5 Supparatpinyo K., Khamwan C., Baosoung V., Nelson K.E., Sirisanthana T. (1994) Disseminated Penicillium marneffei infection in southeast Asia. Lancet 344: 110–113.
- 6 Cao L., Chan C.-M., Lee C., Wong S.S.-Y., Yuen K.-Y. (1998) MP1 encodes an abundant and highly antigenic cell wall mannoprotein in the pathogenic fungus Penicillium marneffei. Infect Immun 66: 966–973.
- 7 Hamilton A.J., Jeavons L., Youngchim S., Vanittanakom N., Hay R.J. (1998) Sialic acid-dependent recognition of laminin by Penicillium marneffei conidia. Infect Immun 66: 6024–6026.
- 8 Srinoulprasert Y., Kongtawelert P., Chaiyaroj S. (2006) Chondroitin sulfate B and heparin mediate adhesion of Penicillium marneffei conidia to host extracellular matrices. Microb Pathog 40: 126–132.
- 9 Dong Z.M., Murphy J.W. (1997) Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect Immun 65: 557–563.
- 10 Forsyth C.B., Plow E.F., Zhang L. (1998) Interaction of the fungal pathogen Candida albicans with integrin CD11b/CD18: recognition by the I domain is modulated by the lectin-like domain and the CD18 subunit. J Immunol 161: 6198–6205.
- 11 Rongrungruang Y., Levitz S.M. (1999) Interactions of Penicillium marneffei with human leukocytes in vitro. Infect Immun 67: 4732–4736.
- 12 Yamamoto Y., Klein T., Friedman H. (1997) Involvement of mannose receptor in cytokine interleukin-1β (IL-1β), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1β (MIP-1β), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect Immun 65: 1077–1082.
- 13 Brown G., Herre J., Williams D., Willment J., Marshall A., Gordon S. (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197: 1119–1124.
- 14 Hohl T., Van Epps H., Rivera A., Morgan L., Chen P., Feldmesser M., Pamer E. (2005) Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLoS Pathog 1: 232–240.
- 15 Steele C., Rapaka R., Metz A., Pop S., Williams D., Gordon S., Kolls J., Brown G. (2005) Recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 1: 323–334.
- 16 Shoham S., Huang C., Chen J.-M., Golenbock D.T., Levitz S.M. (2001) Toll-like receptor 4 mediates intracellular signaling without TNF-α release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 166: 4620–4626.
- 17 Wang J.E., Warris A., Ellingsen E.A., Jorgensen P.F., Flo T.H., Espevik T., Solberg R., Verweij P.E., Aasen A.O. (2001) Involvement of CD14 and Toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 69: 2402–2406.
- 18 Tada H., Nemoto E., Shimauchi H., Watanabe T., Mikami T., Matsumoto T., Ohno N., Tamura H., Shibata K., Akashi S., Miyake K., Sugawara S., Takada H. (2002) Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol 46: 503–512.
- 19 Yauch L., Mansour M., Shoham S., Rottman J., Levitz S. (2004) Involvement of CD14, Toll-Like Receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 72: 5373–5382.
- 20 Netea M.G., Van Der Graaf C., Vonk A.G., Verschueren I., Van Der Meer J.W., Kullberg B.J. (2002) The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185: 1483–1489.
- 21 Bellocchio S., Montagnoli C., Bozza S., Gaziano R., Rossi G., Mambula S., Vecchi A., Mantovani A., Levitz S., Romani L. (2004) The contribution of Toll-like/IL-1 receptor superfamily to innate and adative immunity to fungal pathogens in vivo. J Immunol 172: 3059–3069.
- 22 Marr K., Balajee S., Hawn T., Ozinsky A., Pham U., Akira S., Aderem A., Liles W. (2003) Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect Immun 71: 5280–5286.
- 23 Mambula S., Sau K., Henneke P., Golenbock D., Levitz S. (2002) Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 277: 39320–39326.
- 24 Kudeken N., Kawakami K., Siato A. (2000) Mechanisms of the in vitro fungicidal effects of human neutrophils against Penicillium marneffei induced by granulocyte-macrophage colony-stimulating factor (GM-CSF). Clin Exp Immunol 119: 472–478.
- 25 Campbell P.A., Canono B.P., Drevets D.A. (1994) Discrimination between extracellular and intracellular bacteria using FITC labeling. John Wiley & Sons, 14.16.4–14.16.13.
- 26 Abrahams V., Bole-Aldo P., Kim Y., Straszewski-Chavez S., Chaiworapongsa T., Romero R., Mor G. (2004) Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol 173: 4286–4296.
- 27 Galdiero M., Galdiero M., Finamore E., Rossano F., Gambuzza M., Catania M., Teti G., Midiri A., Mancuso G. (2004) Haemophilus influenzae porin induces Toll-Like Receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infect Immun 72: 1204–1209.
- 28 Hermand P., Huet M., Callebaut I., Gane P., Ihanus E., Gahmberg C., Cartron J., Bailly P. (2000) Binding sites of leukocyte b2 integrins (LFA-1, Mac-1) on the human ICAM-4/LW blood group protein. J Biol Chem 275: 26002–26010.
- 29 Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777–1782.
- 30 Nakao Y., Funami K., Kikkawa S., Taniguchi M., Nishiguchi M., Fukumori Y., Seya T., Matsumoto M. (2005) Surface-expressed TLR6 participates in the recognition of diacylated lipopeptide and peptidoglycan in human cells. J Immunol 174: 1566–1573.
- 31 Forsyth C.B., Mathews H.L. (1996) Lymphocytes utilize CD11b/CD18 for adhesion to Candida albicans. Cell Immunol 170: 91–100.
- 32 Gildea L.A., Morris R.E., Newman S.L. (2001) Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. J Immunol 166: 1049–1056.
- 33 Pons A., Noguera A., Blanquer D., Sauleda J., Pons J., Agustı A. (2005) Phenotypic characterisation of alveolar macrophages and peripheral blood monocytes in COPD. Eur Respir J 25: 647–652.
- 34 East L., Isacke C. (2002) The mannose receptor family. Biochim Biophys Acta 1572: 364–386.
- 35 Koguchi Y., Kawakami K., Kon S., Segawa T., Maeda M., Uede T., Saito A. (2002) Penicillium marneffei causes osteopontin-mediated production of interleukin-12 by peripheral blood mononuclear cells. Infect Immun 70: 1042–1048.
- 36 Brown G., Taylor P., Reid D., Willment J., Williams D., Martinez-Pomares L., Wong S., Gordon S. (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196: 407–412.
- 37 Newman S., Bucher C., Rhodes J., Bullock W. (1990) Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. J Clin Invest 85: 223–230.
- 38 Newman S. (1999) Macrophages in host defense against Histoplasma capsulatum. Trends Microbiol 7: 67–71.
- 39 Newman S., Chaturvedi S., Klein B. (1995) The WI-1 antigen of Blastomyces dermatitidis yeasts mediates binding to human macrophage CD11b/CD18 (CR3) and CD14. J Immunol 154: 753–761.
- 40 Cross C., Collins H., Bancroft G. (1997) CR3-dependent phagocytosis by murine macrophages: different cytokines regulate ingestion of a defined CR3 ligand and complement-opsonized Cryptococcus neoformans. Immunology 91: 289–296.
- 41 Taborda C., Casadevall A. (2002) CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16: 791–802.
- 42 Brummer E., Kamberi M., Stevens D. (2003) Regulation by granulocyte-macrophage colony-stimulating factor and/or steroids given in vivo of proinflammatory cytokine and chemokine production by bronchoalveolar macrophages in response to Aspergillus conidia. J Infect Dis 187: 705–709.
- 43 Sisto F., Miluzio A., Leopardi O., Mirra M., Boelaert J.R., Taramelli D. (2003) Differential cytokine pattern in the spleens and livers of BALB/c mice infected with Penicillium marneffei: protective role of gamma interferon. Infect Immun 71: 465–473.
- 44 Del Sero G., Mencacci A., Cenci E., Fè d'Ostiani C., Montagnoli C., Bacci A., Paolo M., Kopf M., Romani L. (1999) Antifungal type 1 responses are up-regulated in IL-10-deficient mice. Microbes Infect 1: 1169–1180.
- 45 Meier A., Kirschning C., Nikolaus T., Wagner H., Heesemann J., Ebel F. (2003) Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol 5: 561–570.
- 46 Wood K.L., Hage C.A., Knox K.S., Kleiman M.B., Sannuti A., Day R.B., Wheat L.J., Twigg H.L. 3rd. (2003) Histoplasmosis after treatment with anti-tumor necrosis factor-alpha therapy. Am J Respir Crit Care Med 167: 1279–1282.
- 47 Netea M.G., Van De Veerdonk F., Verschueren I., Van Der Meer J.W., Kullberg B.J. (2008) Role of TLR1 and TLR6 in the host defense against disseminated candidiasis. FEMS Immunol Med Microbiol 52: 118–123.