Human immunodeficiency virus type-1 vulnerates nascent neuronal cells
Hiroko Kitayama
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorYoshiharu Miura
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorYoshinori Ando
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorYoshio Koyanagi
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorHiroko Kitayama
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorYoshiharu Miura
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorYoshinori Ando
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorYoshio Koyanagi
Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
Search for more papers by this authorABSTRACT
Macrophages or microglial cells are the major target cells for HIV-1 infection in the brain. The infected cells release neurotoxic factors that may cause severe neuronal cell damage, especially in the basal ganglia and hippocampus. In this study, we used rat OHC to examine the region-specific neuronal cell damage caused by HIV-1-infected macrophages. When OHC was cocultured with HIV-1-infected MDM, we found that neuronal cells at the GCL of the DG were preferentially killed via apoptosis, and that projection of MF from GCL to PCL of the CA3 region was severely disturbed. We marked precursor cells around the DG region by using an EGFP-expressing retrovirus vector and found that these cells lost the ability to differentiate into neurons when exposed to HIV-1-infected MDM. In the DG, new neurons are normally incorporated into GCL or PCL, while in the presence of HIV-1-infected MDM, mature neurons failed to be incorporated into those layers. These data indicate that the neurotoxic factor(s) released from HIV-1-infected macrophages impede(s) neuronal cell repair in brain tissue. This suggests that DG is the region of the hippocampus most vulnerable to neuronal damage caused by HIV-1 infection, and that its selective vulnerability is most likely due to the highly active neurogenesis that takes place in this region.
REFERENCES
- 1 Ellis R., Langford D., Masliah E. (2007). HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat. Rev. Neurosci 8: 33–44.
- 2 Gonzalez-Scarano F., Martin-Garcia J. (2005). The neuropathogenesis of AIDS. Nat Rev Immunol 5: 69–81.
- 3 Price R.W., Brew B.J. (1988). The AIDS dementia complex. J Infect Dis 158: 1079–83.
- 4 Dore G.J., Correll P.K., Li Y., Kaldor J.M., Cooper D.A., Brew B.J. (1999). Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13: 1249–53.
- 5 Sacktor N., McDermott M.P., Marder K., Schifitto G., Selnes O.A., McArthur J.C., Stern Y., Albert S., Palumbo D., Kieburtz K., De Marcaida J.A., Cohen B., Epstein L. (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8: 136–42.
- 6 Mattson M.P., Haughey N.J., Nath A. (2005). Cell death in HIV dementia. Cell Death Differ. 12: 893–904.
- 7 Kaul M., Garden G.A., Lipton S.A. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–94.
- 8 Minagar A., Shapshak P., Fujimura R., Ownby R., Heyes M., Eisdorfer C. (2002). The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202: 13–23.
- 9 Pulliam L., Herndier B.G., Tang N.M., McGrath M.S. (1991). Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87: 503–12.
- 10 Wang G.J., Chang L., Volkow N.D., Telang F., Logan J., Ernst T., Fowler J.S. (2004). Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127: 2452–8.
- 11 Poluektova L., Meyer V., Walters L., Paez X., Gendelman H.E. (2005). Macrophage-induced inflammation affects hippocampal plasticity and neuronal development in a murine model of HIV-1 encephalitis. Glia 52: 344–53.
- 12 Gahwiler B.H., Capogna M., Debanne D., McKinney R.A., Thompson S.M. (1997). Organotypic slice cultures: a technique has come of age. Trends Neurosci 20: 471–7.
- 13 Dailey M.E., Buchanan J., Bergles D.E., Smith S.J. (1994). Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro. J Neurosci 14: 1060–78.
- 14 Gahwiler B.H. (1984). Development of the hippocampus in vitro: cell types, synapses and receptors. Neuroscience 11: 751–60.
- 15 Zimmer J., Gahwiler B.H. (1984). Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata. J Comp Neurol 228: 432–46.
- 16 Gutierrez R., Heinemann U. (1999). Synaptic reorganization in explanted cultures of rat hippocampus. Brain Res 815: 304–16.
- 17 Robain O., Barbin G., Billette de Villemeur T., Jardin L., Jahchan T., Ben-Ari Y. (1994). Development of mossy fiber synapses in hippocampal slice culture. Brain Res Dev Brain Res 80: 244–50.
- 18 Kamada M., Li R.Y., Hashimoto M., Kakuda M., Okada H., Koyanagi Y., Ishizuka T., Yawo H. (2004). Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus. Eur J Neurosci 20: 2499–508.
- 19 Raineteau O., Rietschin L., Gradwohl G., Guillemot F., Gahwiler B.H. (2004). Neurogenesis in hippocampal slice cultures. Mol Cell Neurosci 26: 241–50.
- 20 Koyanagi Y., O'Brien W.A., Zhao J.Q., Golde D.W., Gasson J.C., Chen I.S. (1988). Cytokines alter production of HIV-1 from primary mononuclear phagocytes. Science 241: 1673–5.
- 21 An D.S., Morizono K., Li Q.X., Mao S.H., Lu S., Chen I.S. (1999). An inducible human immunodeficiency virus type 1 (HIV-1) vector which effectively suppresses HIV-1 replication. J Virol 73: 7671–7.
- 22 An D.S., Koyanagi Y., Zhao J.Q., Akkina R., Bristol G., Yamamoto N., Zack J.A., Chen I.S. (1997). High-efficiency transduction of human lymphoid progenitor cells and expression in differentiated T cells. J Virol 71: 1397–404.
- 23 Nicoll R.A., Schmitz D. (2005). Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6: 863–76.
- 24 Lledo P.M., Alonso M., Grubb M.S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7: 179–93.
- 25 Aggoun-Zouaoui D., Charriaut-Marlangue C., Rivera S., Jorquera I., Ben-Ari Y., Represa A. (1996). The HIV-1 envelope protein gp120 induces neuronal apoptosis in hippocampal slices. Neuroreport 7: 433–6.
- 26 Brana C., Biggs T.E., Mann D.A., Sundstrom L.E. (1999). A macrophage hippocampal slice co-culture system: application to the study of HIV-induced brain damage. J Neurosci Methods 90: 7–11.
- 27 Prendergast M.A., Rogers D.T., Mulholland P.J., Littleton J.M., Wilkins L.H., Jr., Self R.L., Nath A. (2002). Neurotoxic effects of the human immunodeficiency virus type-1 transcription factor Tat require function of a polyamine sensitive-site on the N-methyl-D-aspartate receptor. Brain Res 954: 300–7.
- 28 Williams K.C., Corey S., Westmoreland S.V., Pauley D., Knight H., DeBakker C., Alvarez X., Lackner A.A. (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193: 905–15.
- 29 Bachis A., Aden S.A., Nosheny R.L., Andrews P.M., Mocchetti I. (2006). Axonal transport of human immunodeficiency virus type 1 envelope protein glycoprotein 120 is found in association with neuronal apoptosis. J Neurosci 26: 6771–80.
- 30 Bruce-Keller A.J., Chauhan A., Dimayuga F.O., Gee J., Keller J.N., Nath A. (2003). Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci 23: 8417–22.
- 31 Jones G.J., Barsby N.L., Cohen E.A., Holden J., Harris K., Dickie P., Jhamandas J., Power C. (2007). HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27: 3703–11.
- 32 Kaul M., Lipton S.A. (1999). Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96: 8212–6.
- 33 Piller S.C., Jans P., Gage P.W., Jans D.A. (1998). Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci U S A 95: 4595–600.
- 34
Fontana G.,
Valenti L.,
Raiteri M. (1997). Gp120 can revert antagonism at the glycine site of NMDA receptors mediating GABA release from cultured hippocampal neurons.
J Neurosci Res
49: 732–8.
10.1002/(SICI)1097-4547(19970915)49:6<732::AID-JNR7>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 35 Tenneti L., Lipton S.A. (2000). Involvement of activated caspase-3-like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 74: 134–42.
- 36 Adamson D.C., McArthur J.C., Dawson T.M., Dawson V.L. (1999). Rate and severity of HIV-associated dementia (HAD): correlations with Gp41 and iNOS. Mol Med 5: 98–109.
- 37 Blond D., Raoul H., Le Grand R., Dormont D. (2000). Nitric oxide synthesis enhances human immunodeficiency virus replication in primary human macrophages. J Virol 74: 8904–12.
- 38 Bukrinsky M.I., Nottet H.S., Schmidtmayerova H., Dubrovsky L., Flanagan C.R., Mullins M.E., Lipton S.A., Gendelman H.E. (1995). Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med 181: 735–45.
- 39 Bezzi P., Domercq M., Brambilla L., Galli R., Schols D., De Clercq E., Vescovi A., Bagetta G., Kollias G., Meldolesi J., Volterra A. (2001). CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4: 702–10.
- 40 Foos T.M., Wu J.Y. (2002). The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27: 21–6.
- 41 Haas C.A., Dudeck O., Kirsch M., Huszka C., Kann G., Pollak S., Zentner J., Frotscher M. (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22: 5797–802.
- 42 Mayer D., Fischer H., Schneider U., Heimrich B., Schwemmle M. (2005). Borna disease virus replication in organotypic hippocampal slice cultures from rats results in selective damage of dentate granule cells. J Virol 79: 11716–23.
- 43 Eriksson P.S., Perfilieva E., Bjork-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., Gage F.H. (1998). Neurogenesis in the adult human hippocampus. Nat Med 4: 1313–7.
- 44 Shors T.J., Miesegaes G., Beylin A., Zhao M., Rydel T., Gould E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature 410: 372–6.
- 45 Van Praag H., Schinder A.F., Christie B.R., Toni N., Palmer T.D., Gage F.H. (2002). Functiona neurogenesis in the adult hippocampus. Nature 415: 1030–4.
- 46 McKinney R.A., Capogna M., Durr R., Gahwiler B.H., Thompson S.M. (1999). Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2: 44–9.
- 47 Nacher J., McEwen B.S. (2006). The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus 16: 267–70.
- 48 Nacher J., Varea E., Miguel Blasco-Ibanez J., Gomez-Climent M.A., Castillo-Gomez E., Crespo C., Martinez-Guijarro F.J., McEwen B.S. (2007). N-methyl-d-aspartate receptor expression during adult neurogenesis in the rat dentate gyrus. Neuroscience 144: 855–64.
- 49 Horton A.C., Ehlers M.D. (2003). Neuronal polarity and trafficking. Neuron 40: 277–95.