Early treatment during a primary malaria infection modifies the development of cross immunity
Corresponding Author
M. Legorreta-Herrera
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Dr Martha Legorreta-Herrera, Laboratorio de Immunología Molecular, FES Zaragoza, UNAM, Batalla 5 de Mayo esq. Fuerte de Loreto, Ejército de Oriente 09320, Itzapalapa, Mexico (e-mail: [email protected]).Search for more papers by this authorM. L. Ventura-Ayala
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorR. N. Licona-Chávez
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorI. Soto-Cruz
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorF. F. Hernández-Clemente
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorCorresponding Author
M. Legorreta-Herrera
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Dr Martha Legorreta-Herrera, Laboratorio de Immunología Molecular, FES Zaragoza, UNAM, Batalla 5 de Mayo esq. Fuerte de Loreto, Ejército de Oriente 09320, Itzapalapa, Mexico (e-mail: [email protected]).Search for more papers by this authorM. L. Ventura-Ayala
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorR. N. Licona-Chávez
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorI. Soto-Cruz
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorF. F. Hernández-Clemente
Laboratorio de Immunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónomia de Mexico, Iztapalapa, Mexico
Search for more papers by this authorSUMMARY
We have used a murine model to study the kinetics of cross-protection when a primary infection is halted at different times. We analysed how parasitaemia is modified during a second infection with the homologous parasite, a heterologous parasite, or a mixture of the two. In addition, possible mechanisms involved in cross-protection were analysed. Results show that treatment with pyrimethamine on day 5 during a primary infection with P. chabaudi AS (non-lethal), prevents the generation of cross-protection to a new challenge with lethal P. yoelii 17XL. In contrast, when treatment is on day 7, mice survive a P. yoelii infection. Differences between both groups suggest that in order for ‘preimmune’ mice to survive a lethal challenge, a predominantly TH2-type response is required, with a higher mRNA expression level of IL-4 and IL-10, and a lower mRNA expression of IFN-γ. This work shows that an early treatment of a malaria infection produced by a non-lethal parasite drives the immune response towards a loss of cross-protection to further infections, in particular with more virulent parasites. This finding should be taken into account for the development of effective malaria vaccines.
REFERENCES
- 1 Breman JG. The ears of the hippopotamus: Manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 2001; 64: 1–11.
- 2 Perkins D, Kremsner P, Schmid D, Misukonis M, Kelly M & Weinberg JB. Blood mononuclear cell nitric oxide production and plasma cytokine levels in healthy Gabonese children with prior mild or severe malaria. Infect Immun 1999; 67: 4977–4981.
- 3 Long CA, Daly TM, Kima P & Srivastava I. Immunity to erythrocytic stages of malaria parasites. Am J Trop Med Hyg 1994; 50 (4 Suppl.): 27–32.
- 4 Jones TR Obaldia N 3rd, Gramzinski RA & Hoffman SL. Repeated infection of Aotus monkeys with Plasmodium falciparum induces protection against subsequent challenge with homologous and heterologous strains of parasite. Am J Trop Med Hyg 2000; 62: 675–680.
- 5 Perlmann P & Troye-Blomberg M. Malaria blood-stage infection and its control by the immune system. Folia Biol (Krakow) 2000; 46: 210–218.
- 6 Greenwood BM, Bradley AK, Greenwood AM, et al. Mortality and morbidity from malaria among children in a rural area of the Gambia, West Africa. Trans R Soc Trop Med Hyg 1987; 81: 471–486.
- 7 Maitland K, Williams TN & Newbold CI. Plasmodium vivax and P. falciparum: biological interactions and the possibility of cross-species immunity. Parasitol Today 1997; 13: 227–231.
- 8 Bruce MC & Day KP. Cross-species regulation of malaria parasitaemia in the human host. Curr Opin Microbiol 2002; 5: 431–437.
- 9 Snounou G, Viriyakosol S, Jarra W, Thaithong S & Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol 1993; 61: 315–320.
- 10 Perandin F, Manca N, Piccolo G, et al. Identification of Plasmodium falciparum, P. vivax, P. ovale and P. malariae and detection of mixed infection in patients with imported malaria in Italy. New Microbiol 2003; 26: 91–100.
- 11 McColm AA & Dalton L. Heterologous immunity in rodent malaria: comparison of the degree of cross-immunity generated by vaccination with that produced by exposure to live infection. Ann Trop Med Parasitol 1983; 77: 355–377.
- 12 Jarra W & Brown KN. Protective immunity to malaria. studies with cloned lines of Plasmodium chabaudi and P. berghei in CBA/Ca mice. I. The effectiveness and inter- and intra-species specificity of immunity induced by infection. Parasite Immunol 1985; 7: 595–606.
- 13 Smith T, Genton B, Baea K, Gibson N, Narara A & Alpers MP. Prospective risk of morbidity in relation to malaria infection in an area of high endemicity of multiple species of Plasmodium. Am J Trop Med Hyg 2001; 64: 262–267.
- 14 Mohan K & Stevenson MM. In Malaria: Parasite Biology, Pathogenesis, and Protection, ed IW Sherman. Washington: American Society for Microbiology; 1998: 11–22.
- 15 Brown KN. The parasitology of malaria and the study of protective immunity. Immunol Lett 1990; 25: 97–99.
- 16 Snounou G, Jarra W, Viriyakosol S, Wood JC & Brown KN. Use of a DNA probe to analyse the dynamics of infection with rodent malaria parasites confirms that parasite clearance during crisis is predominantly strain- and species-specific. Mol Biochem Parasitol 1989; 37: 37–46.
- 17 Lewis AP. Cloning and analysis of the gene encoding the 230-kilodalton merozoite surface antigen of Plasmodium yoelii. Mol Biochem Parasitol 1989; 36: 271–282.
- 18 McKean PG, O'Dea KP & Brown KN. Nucleotide sequence analysis and epitope mapping of the merozoite surface protein 1 from Plasmodium chabaudi chabaudi AS. Mol Biochem Parasitol 1993; 37: 37–46.
- 19 Mason DP & McKenzie FE. Blood-stage dynamics and clinical implications of mixed Plasmodium vivax–Plasmodium falciparum infections. Am J Trop Med Hyg 1999; 61: 367–374.
- 20 Falanga PB & Pereira da Silva L. Acute virulent infection with Plasmodium chabaudi does not impair the generation of a protective immune response. Parasite Immunol 1989; 11: 603–611.
- 21 Weiss L, Jonson J & Weidanz W. Mechanisms of splenic control of murine malaria: tissue culture studies of the erythropoietic interplay of spleen, bone marrow, blood in lethal (strain 17XL) Plasmodium yoelii malaria in BALB/c mice. Am J Trop Med Hyg 1989; 41: 135–143.
- 22 Souu Y, Xue C & Wu W. Relationship between tumour necrosis factor and anemia of malaria. Chung Ping Tsa Chih 1995; 13: 134–137.
- 23 Biemba G, Gordeuk VR, Thuma P, Mabeza GF & Weiss G. Prolonged macrophage activation and persistent anaemia in children with complicated malaria. Trop Med Int Health 1998; 3: 60–65.
- 24 Ekvall H. Malaria and anemia. Curr Opin Hematol 2003; 10: 108–114.
- 25
Richie TL.
Interactions between malaria parasites infecting the same vertebrate host.
Parasitology
1988; 96: 606–639.
10.1017/S0031182000080227 Google Scholar
- 26 Taylor-Robinson AW. Species-transcending regulation of malaria parasitaemia. Parasitol Today 2000; 16: 460–461.
- 27 Knowles G & Davidson WL. An antigenic determinant which is variant in a population of Plasmodium falciparum is present in isolates of P. malariae. Am J Trop Med Hyg 1984; 33: 789–791.
- 28 Newbold CI, Schryer M, Boyle DB, et al. A possible molecular basis for strain specific immunity to malaria. Mol Biochem Parasitol 1984; 11: 337–347.
- 29 Mota MM & Brown KN, Do Rosario VE, Holder AA, Jarra W. Antibody recognition of rodent malaria parasite antigens exposed at the infected erythrocyte surface: specificity of immunity generated in hyperimmune mice. Infect Immun 2001; 69: 2535–2541.
- 30 Janssen CS, Barrett MP, Turner CM & Phillips RS. A large gene family for putative variant antigens shared by human and rodent malaria parasites. Proc R Soc Lond B Biol Sci 2002; 269: 431–436.
- 31 Rockett KA, Awburn MM, Aggarwal BB, Cowden WB & Clark IA. In vivo induction of nitrite and nitrate by tumor necrosis factor lymphotoxin, and interleukin-1: possible roles in malaria. Infect Immun 1992; 60: 3725–3730.
- 32 Taylor-Robinson AW, Phillips RS, Severn A, Moncada S & Liew FY. The role of TH1 and TH2 cells in a rodent malaria infection. Science 1993; 260: 1931–1934.
- 33 Yoneto T, Yoshimoto T, Wang C, et al. Gamma interferon production is critical for protective immunity to infection with Blood-stage Plasmodium berghei XAT but neither NO production nor NK cell activation is critical. Infect Immun 1999; 67: 2349–2356.
- 34 Kobayashi F, Ishida H, Matsui T & Tsuji M. Effects of in vivo administration of anti-IL-10 or anti-IFN-gamma monoclonal antibody on the host defense mechanism against Plasmodium yoelii yoelii infection. J Vet Med Sci 2000; 62: 583–587.
- 35 Stevenson MM, Tam MF, Wolf SF & Sher A. IL-12 induced protection against blood-stage Plasmodium chabaudi AS requires IFN-γ and TNF-α and occurs via a nitric oxide dependent mechanism. J Immunol 1995; 155: 2545–2556.
- 36 Bastos KR, Barboza R, Elias RM, et al. Impaired macrophage responses may contribute to exacerbate of blood-stage Plasmodium chabaudi chabaudi malaria in interleukin-12-deficient mice. J Interferon Cytokine Res 2002; 22: 1191–1199.
- 37 Choudhury HR, Sheikh NA, Bancroft GJ, Katz DR & De Souza JB. Early nonspecific immune responses and immunity to blood-stage nonlethal Plasmodium yoelii malaria. Infect Immun 2000; 68: 6127–6132.
- 38 Weiss L. The spleen in malaria: the role of barrier cells. Immunol Lett 1990; 25: 165–172.
- 39 Kumar S & Miller LH. Cellular mechanisms in immunity to blood stage infection. Immunol Lett 1990; 25: 109–114.
- 40 Sayles PC, Cooley AJ & Wassom DL. A spleen is not necessary to resolve infections with Plasmodium yoelii. Am J Trop Med Hyg 1991; 44: 42–48.
- 41 Atchman AH, Khan M, MacLennan IC & Langhorne J. Plasmodium chabaudi chabaudi infection in mice induces strong cell responses and striking but temporary changes in splenic cell distribution. J Immunol 2003; 171: 317–324.
- 42 Langhorne J, Gillard S, Simon B, Slade S & Eichmann K. Frequencies of CD4+ T cells reactive with Plasmodium chabaudi chabaudi: distinct response kinetics for cells with Th1 and Th2 characteristics during infection. Int Immunol 1989; 1: 416–424.
- 43 Matsumoto S, Yukitake H, Kanbara H, Yamada H, Kitamura A & Yamada Y. Mycobacterium bovis bacillus calmette-guerin induces protective immunity against infection by Plasmodium yoelii at blood-stage depending on shifting immunity toward Th1 type and inducing protective IgG2a after the parasite infection. Vaccine 2001; 19: 779–787.
- 44 Akanmori BD, Waki S & Suzuki M. Immunoglobulin G2a isotype may have a protective role in Plasmodium berghei NK65 infection in immunized mice. Parasitol Res 1994; 80: 638–641.
- 45 Waki S, Uehara S, Kanbe K, Nariuch H & Suzuki M. Interferon-gamma and the induction of protective IgG2a antibodies in non-lethal Plasmodium berghei infections of mice. Parasite Immunol 1995; 17: 503–508.
- 46 Langhorne J, Kim KJ & Asofsky R. Distribution of immunoglobulin isotypes in the nonspecific B-cell response induced by infection with Plasmodium chabaudi adami and Plasmodium yoelii. Cell Immunol 1985; 90: 251–257.
- 47 Cavinato RA, Bastos KRB, Sardinha LR, Elias RM, Alvarez JM & D’Imperio Lima MR. Susceptibility of the different developmental stages of the asexual (schizogonic) erythrocyte cycle of Plasmodium chabaudi chabaudi to hyperimmune serum, immunoglobulin (Ig)G1, IgG2a and F(ab′)2 fragments. Parasite Immunol 2001; 23: 587–597.
- 48 Kedzierski L, Black CG, Stowers AW, Goschnick MW, Kaslow DC & Coppel RL. Comparison of the protective efficacy of yeast-derived and Escherichia coli-derived recombinant merozoite surface protein 4/5 against lethal challenge by Plasmodium yoelii. Vaccine 2001; 19: 4661–4668.
- 49 Garraud O, Mahanty S & Perraut R. Malaria-specific antibody subclasses in immune individuals: a key source of information for vaccine design. Trends Immunol 2003; 24: 30–35.
- 50 Snapper CM & Paul WE. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 1987; 236: 944–947.
- 51 Stavnezer J. Antibody class switching. Adv Immunol 1996; 61: 79–146.
- 52 Smith EC & Taylor-Robinson AW. Parasite-specific immunoglobulin isotypes during lethal and non-lethal murine malaria infections. Parasitol Res 2003; 89: 26–33.
- 53 Mota MM, Brown KN, Holder AA & Jarra W. Acute Plasmodium chabaudi chabaudi malaria infection induces antibodies which bind to the surface of parasitized erythrocytes and promote their phagocytosis by macrophages in vitro. Infect Immun 1998; 66: 4080–4086.