TESTING HYPOTHESES OF CONVERGENCE WITH MULTIVARIATE DATA: MORPHOLOGICAL AND FUNCTIONAL CONVERGENCE AMONG HERBIVOROUS LIZARDS
C. Tristan Stayton
Committee on Evolutionary Biology, The University of Chicago, Culver 402, 1025 East 57th Street, Chicago, Illinois 60637
Department of Zoology, The Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605
Department of Biology, Bucknell University, Lewisburg, Pennsylvania 17837; E-mail: [email protected].
Search for more papers by this authorC. Tristan Stayton
Committee on Evolutionary Biology, The University of Chicago, Culver 402, 1025 East 57th Street, Chicago, Illinois 60637
Department of Zoology, The Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605
Department of Biology, Bucknell University, Lewisburg, Pennsylvania 17837; E-mail: [email protected].
Search for more papers by this authorAbstract
Abstract Despite its importance to evolutionary theory, convergence remains an understudied phenomenon and is usually investigated using qualitative data. This paper advances a new, multidimensional view of convergence. Three patterns indicative of convergence are discussed, and techniques to discover and test convergent patterns in a quantitative framework are developed. These concepts and methods are applied to a dataset of digitized coordinates on 1554 lizard skulls and 1292 lower jaws to test hypotheses of convergence among herbivorous lizards. Encompassing seven independent acquisitions of herbivory, this lizard sample provides an ideal natural experiment for exploring ideas of convergence among different systems (here, morphological and functional). Three related questions are addressed: (1) Do herbivorous lizards show evidence of convergence in skull and lower jaw morphology? (2) What, if any, is the morphospace pattern associated with this convergence? (3) Is it possible to predict the direction of convergence using functional models? Relative warp analysis and permutation tests reveal that the skulls and lower jaws of herbivorous lizards do show evidence of convergence. Herbivore skulls deviate from their carnivorous or omnivorous sister groups toward the same area of morphospace. Without a phylogenetic perspective, this pattern would not be recognizable. Lower jaws of herbivores are not convergent in morphology but are convergent in function: herbivores deviate away from their carnivorous sister groups toward higher values of mechanical advantage. These results illustrate the desirability of quantitative methods, informed by phylogenetic information, in the study of convergence.
Literature Cited
- Ackerly, D. D., and M. J. Donoghue. 1998. Leaf size, allometry, and Corner's rules: phylogeny and correlated evolution in maples (Acer). Am. Nat. 152: 767–791.
- Adams, D. C., and F. J. Rohlf. 2000. Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proc. Natl. Acad. Sci. USA 97: 4106–4111.
- Alfaro, M. E., D. I. Bolnick, and P. C. Wainwright. 2004. Evolutionary dynamics of complex biomechanical systems: an example using the four-bar mechanism. Evolution 58: 495–503.
- Auffenberg, W. 1988. Gray's monitor lizard. Univ. of Florida Press, Gainesville , FL .
- Barrett, P. M. 2000. Prosauropod dinosaurs and iguanas: speculations on the diets of extinct reptiles. Pp. 42–78 in H.-D. Sues, ed. Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. Cambridge Univ. Press, Cambridge , U.K .
- Blomberg, S. P., and T. Garland Jr. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation, and comparative methods. J. Evol. Biol. 15: 899–910.
- Bookstein, F. L. 1991. Morphometric tools for landmark data. Cambridge Univ. Press, Cambridge , U.K .
- Brochu, C. A. 2001. Crocodilian snouts in space and time: phylogenetic approaches toward adaptive radiation. Am. Zool. 41: 564–585.
- Burghardt, G. M., and A. S. Rand. 1982. Iguanas of the world: their behavior, ecology, and conservation. Noyes Publications, Park Ridge , NJ .
- Castilla, A. M., D. Bauwens, and G. A. Llorente. 1991. Diet composition of the lizard Lacerta lepida in Central Spain. J. Herpetol. 25: 30–36.
- Chapple, D. G. 2003. Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 17: 145–180.
- Clobert, J., T. Garland Jr., and R. Barbault. 1998. The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. J. Evol. Biol. 11: 329–364.
- Cooper, W. E., Jr., and L. J. Vitt. 2002. Distribution, extent, and evolution of plant consumption by lizards. J. Zool. Lond. 257: 487–517.
- Dearing, M. D. 1988. Are herbivorous lizards nutrient mixers, toxin avoiders, or amount maximizers? A test of three models on diet selection by Cnemidophorus murinus. MSc thesis, University of Vermont, Burlington, VT.
- Dearing, M. D. 1993. An alimentary specialization for herbivory in the tropical whiptail lizard Cnemidophorus murinus. J. Herpetol. 72: 111–114.
- Dobzhansky, T., F. J. Ayala, G. L. Stebbins, and J. W. Valentine. 1977. Evolution. W. H. Freeman, San Francisco , CA .
- Dryden, I. L., and K. V. Mardia. 1998. Statistical shape analysis. John Wiley and Sons, New York .
- Durtsche, R. D. 2000. Ontogenetic plasticity of food habits in the Mexican spiny-tailed iguana, Ctenosaura pectinata. Oecologia 124: 185–195.
-
Efron, B., and
R. J. Tibshirani. 1993. An introduction to the bootstrap. Chapman and Hall,
New York
.
10.1007/978-1-4899-4541-9 Google Scholar
- Emerson, S. B. 1988. Testing for historical patterns of change: a case study with frog pectoral girdles. Paleobiology 14: 174–186.
- Emerson, S. B., and S. J. Arnold. 1989. Intra- and interspecific relationships between morphology, performance, and fitness. Pp. 295–314 in D. B. Wake, and G. Roth, eds. Complex organismal functions: integration and evolution in vertebrates. Wiley, Chichester , U.K .
- Emerson, S. B., and M. A. R. Koehl. 1990. The interaction of behavioral and morphological change in the evolution of a novel locomotor type: “flying” frogs. Evolution 44: 1931–1946.
- Espinoza, R. E., J. J. Wiens, and C. R. Tracy. 2004. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc. Natl. Acad. Sci. USA 101: 16819–16824.
- Estes, R. 1983. Handbuch der Paläoherpetologie, Teil 10 A, Sauria terrestria, Amphisbaenia. Gustav Fischer Verlag, Stuttgart .
- Estes, R., K. De Queiroz, and J. A. Gauthier. 1988. Phylogenetic relationships within Squamata. Pp. 119–281 in R. Estes and G. Pregill, eds. Phylogenetic relationships of the lizard families, essays commemorating Charles L. Camp. Stanford Univ. Press, Palo Alto , CA .
- Farris, J. S. 1989. The retention index and homoplasy excess. Syst. Zool. 38: 406–407.
-
Fellers, G. M., and
C. A. Drost. 1991. Ecology of the island night lizard, Xantusia riversiana, on Santa Barbara Island, California.
Herpetol. Monogr.
5: 28–78.
10.2307/1466975 Google Scholar
- Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.
- Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18: 1–16.
- Dearing, M. D. 1997. The evolution of morphological diversity. Ann. Rev. Ecol. Syst. 28: 129–152.
- Fu, J. 2000. Toward the phylogeny of the family Lacertidae: why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol. J. Linn. Soc. 71: 203–217.
- Garland, T., Jr., P. H. Harvey, and A. R. Ives. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 18–32.
- Garland, T., Jr., A. W. Dickerman, C. M. Janis, and J. A. Jones. 1993. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265–292.
- Greene, H. W. 1982. Dietary and phenotypic diversity in lizards: Why are some organisms specialized? Pp. 107–128 in D. Mossakowsky and G. Roth, eds. Environmental adaptation and evolution. Gustav Fischer, Stuttgart .
-
Gould, S. J.
2002. The structure of evolutionary theory. Harvard Univ. Press,
Cambridge
,
MA
.
10.2307/j.ctvjsf433 Google Scholar
- Harlow, H. J., S. S. Hillman, and M. Hoffman. 1976. The effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. J. Comp. Physiol. 111: 1–6.
-
Harvey, P. H., and
M. D. Pagel. 1991. The comparative method in evolutionary biology. Oxford Univ. Press,
Oxford
,
U.K
.
10.1093/oso/9780198546412.001.0001 Google Scholar
- Hedges, S. B., R. L. Bezy, and L. R. Maxson. 1991. Phylogenetic relationships and biogeography of xantusiid lizards, inferred from mitochondrial DNA sequences. Mol. Biol. Evol. 8: 767–780.
- Herrel, A., P. Aerts, and F. De Vree. 1998a. Static biting in lizards: functional morphology of the temporal ligaments. J. Zool. Lond. 244: 135–143.
- Herrel, A., P. Aerts, and F. De Vree. 1998b. Ecomorphology of the lizard feeding apparatus: a modeling approach. Neth. J. Zool. 48: 1–25.
-
Herrel, A.,
P. Aerts, and
F. De Vree. 1999a. Morphology of the feeding system in agamid lizards: ecological correlates.
Anat. Rec.
254: 496–507.
10.1002/(SICI)1097-0185(19990401)254:4<496::AID-AR5>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- Herrel, A., M. Verstappen, and F. De Vree. 1999b. Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A. 184: 501–518.
- Herrel, A., B. Vanhooydonck, and R. Van Damme. 2004. Omnivory in lacertid lizards: adaptive evolution or constraint J. Evol. Biol. 17: 974–984.
- Hertel, F. 1994. Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology 75: 1074–1084.
- Holmberg, A. R. 1957. Lizard hunts on the north coast of Peru. Fieldiana: Anthropol. 36: 203–220.
- Honda, M., H. Ota, M. Kobayashi, J. Nabhitabhata, H.-S. Yong, and T. Hikida. 2000. Phylogenetic relationships, character evolution, and biogeography of the subfamily Lygosominae (Reptilia: Scincidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 15: 452–461.
-
Hotton, N.
1955. A survey of adaptive relationships of dentition to diet in the North American Iguanidae.
Am. Midl. Nat.
53: 88–114.
10.2307/2422301 Google Scholar
- Huey, R. B. 1969. Winter diet of the Peruvian desert fox. Ecology 50: 1089–1091.
- Hulsey, C. D., and P. C. Wainwright. 2001. Projecting mechanics into morphospace: disparity in the feeding system of labrid fishes. Proc. R. Soc. Lond. B 269: 317–326.
- Iverson, J. B. 1980. Colic modification in iguanine lizards. J. Morph. 163: 79–93.
- Iverson, J. B. 1982. Adaptations to herbivory in iguanine lizards. Pp. 60–76 in G. M. Burghardt and A. S. Rand, eds. Iguanas of the world: their behavior, ecology, and conservation. Noyes Publications, Park Ridge , NJ .
- Jackson, D. A. 1993. Stopping rules in principal components analysis: a comparison of heuristic and statistical approaches. Ecology 74: 2204–2214.
- King, G. 1996. Reptiles and herbivory. Chapman and Hall, London .
- Kluge, A. G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Mich. 173: 1–54.
-
Knouft, J. H.
2003. Convergence, divergence, and the effect of congeners on body size ratios in stream fishes.
Evolution
44: 2374–2382.
10.1111/j.0014-3820.2003.tb00249.x Google Scholar
- Larson, A., and J. B. Losos. 1996. Phylogenetic systematics of adaptation. Pp. 187–220 in M. R. Rose and G. V. Lauder, eds. Adaptation. Academic Press, San Diego , CA .
- Lauder, G. V. 1996. The argument from design. Pp. 55–92 in M. R. Rose and G. V. Lauder, eds. Adaptation. Academic Press, San Diego , CA .
- Leal, M., A. K. Knox, and J. Losos. 2002. Lack of convergence in aquatic Anolis lizards. Evolution 56: 785–791.
- Lee, M. S. Y. 1998. Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biol. J. Linn. Soc. 65: 369–453.
- Losos, J. B., and D. B. Miles. 2002. Testing the hypothesis that a clade has adaptively radiated: iguanid lizard clades as a case study. Am. Nat. 160: 147–157.
- Macey, J. R., J. A. Schulte, A. Larson, N. Ananjeva, Y. Wang, R. Pethiyagoda, N. Rastegar-Pouyani, and T. J. Papenfuss. 2000. Evaluating trans-Tethys migration: an example using acrodont lizard phylogenetics. Syst. Biol. 49: 233–256.
- Martins, E. P. 1999. Estimation of ancestral states of continuous characters: a computer simulation study. Syst. Biol. 48: 642–650.
- Martins, E. P., and T. Garland Jr. 1991. Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution 45: 534–557.
- Mateo, J. A., and L. F. López-Jurado. 1992. Study of dentition in lizards from Gran Canaria Island (Canary Islands) and its ecological and evolutionary significance. Biol. J. Linn. Soc. 46: 39–48.
-
Mateo, J. A., and
L. F. López-Jurado. 1997. Dental ontogeny in Lacerta lepida (Sauria, Lacertidae) and its relationship to diet.
Copeia
1997: 461–463.
10.2307/1447773 Google Scholar
- MathWorks. 2000. Using MATLAB. MathWorks, Natick , MA .
- Mattison, C. 1989. Lizards of the world. Blandford, London .
- Mautz, W. J., and W. López-Forment. 1978. Observations on the activity and diet of the cavernicolous lizard Lepidophyma smithii (Sauria: Xantusiidae). Herpetologica 34: 311–313.
- Maynard Smith, J., and R. J. G. Savage. 1959. The mechanics of mammalian jaws. School Sci. Rev. 141: 289–301.
- Mayr, E. 1969. Principles of systematic zoology. McGraw-Hill, New York .
- McCoy, M. 1980. Reptiles of the Solomon Islands. Wau Ecological Institute, Wau, Papua New Guinea .
- McGowan, C. 1999. A practical guide to vertebrate mechanics. Cambridge Univ. Press, Cambridge , U.K .
- McGhee, G. R., and F. R. McKinney. 2000. A theoretical morphologic analysis of convergently evolved erect helical colony form in the Bryozoa. Paleobiology 26: 556–557.
- O'Keefe, F. R. 2002. The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Paleobiology 28: 101–112.
- Osborn, H. F. 1905. The ideas and terms of modern philosophical anatomy. Science 21: 959–961.
- Ostrom, J. H. 1963. Further comments on herbivorous lizards. Evolution 17: 368–369.
-
Pianka, E. R.
1986. Ecology and natural history of desert lizards. Princeton Univ. Press,
Princeton
,
NJ
.
10.1515/9781400886142 Google Scholar
- Pianka, E. R., and L. J. Vitt. 2003. Lizards: windows to the evolution of diversity. Univ. of California Press, Berkeley .
- Pough, F. H. 1973. Lizard energetics and diet. Ecology 54: 837–844.
- Presch, W. 1974. Evolutionary relationships and biogeography of the macroteiid lizards (family Teiidae, subfamily Teiinae). Bull. S. Calif. Acad. Sci. 73: 23–32.
- Reilly, S. M., L. D. McBrayer, and T. D. White. 2001. Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comp. Biochem. Physiol. A 128: 397–415.
- Richtmeister, J. T., V. B. Deleon, and S. R. Lele. 2002. The promise of geometric morphometrics. Yrbk. Phys. Anthr. 45: 63–91.
- Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. Pp. 134–159 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, eds. Contributions to morphometrics. CSIC, Madrid .
- Rohlf, F. J. 1998. TpsSmall: Is shape variation small? Ver. 1.19. Department of Ecology and Evolution, State University of New York at Stony Brook. Available via http:life.bio.sunysb.edumorph.
- Rohlf, F. J. 2003a. tpsDIG32. Ver. 1.40. Department of Ecology and Evolution, State University of New York at Stony Brook. Available via http:life.bio.sunysb.edumorph.
- Rohlf, F. J. 2003b. tpsRelw. ver. 1.37. Department of Ecology and Evolution, State University of New York at Stony Brook. Available via http:life.bio.sunysb.edumorph.
- Rohlf, F. J., and F. L. Bookstein. 2003. Computing the uniform component of shape variation. Syst. Biol. 53: 66–69.
- Rohlf, F. J., and L. F. Marcus. 1993. A revolution in morphometrics. Trends Ecol. Evol. 8: 129–132.
-
Savitsky, A. H.
1983. Coadapted character complexes among snakes: fossoriality, piscivory, and durophagy.
Am. Zool.
23: 397–409.
10.1093/icb/23.2.397 Google Scholar
- Schluter, D. 2000. The ecology of adaptive radiation. Oxford Univ. Press, Oxford , U.K .
- Schmidt, K. P. 1957. Notes on lizards of the genus Dicrodon. Fieldiana Zool. 39: 65–71.
- Schondube, J. E., L. G. Herrera-M., and C. Martinez del Río. 2004. Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104: 59–73.
- Schulte, J. A., II, J. Melville, and A. Larson. 2003a. Molecular phylogenetic evidence for ancient divergence of lizard taxa on either side of Wallace's line. Proc. R. Soc. Lond. B 270: 597–603.
- Schulte, J. A., II, J. P. Valladares, and A. Larson. 2003b. Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica 59: 399–419.
-
Schwenk, K.
2000. Feeding in lepidosaurs. Pp.
175–291
in
K. Schwenk, ed.
Feeding. Academic Press,
San Diego
,
CA
.
10.1016/B978-012632590-4/50009-5 Google Scholar
-
Simpson, G. G.
1961. Principles of animal taxonomy. Columbia Univ. Press,
New York
.
10.7312/simp92414 Google Scholar
- Sokol, O. M. 1967. Herbivory in lizards. Evolution 21: 192–194.
- Stayton, C. T. 2004. Morphological evolution of the lizard skull: a geometric morphometrics survey. J. Morphol. 263: 47–59.
-
Sues, H.-D.
2000. Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. Cambridge Univ. Press,
Cambridge
,
U.K
.
10.1017/CBO9780511549717 Google Scholar
- Szarski, H. 1962. Some remarks on herbivorous lizards. Evolution 16: 529.
- Throckmorton, G. S. 1976. Oral food processing in two herbivorous lizards, Iguana iguana (Iguanidae) and Uromastyx aegypticus [sic] (Agamidae). J. Morphol. 148: 363–390.
- Townsend, T. M., A. Larson, E. Louis, and J. R. Macey. 2004. Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53: 735–757.
- Troyer, K. 1984. Structure and function of the digestive tract of a herbivorous lizard Iguana iguana. Physiol. Zool. 57: 1–8.
- Troyer, K. 1987. Small differences in daytime body temperature affect digestion of natural food in a herbivorous lizard (Iguana iguana). Comp. Biochem. Physiol. A 87: 623–626.
- Vanhooydonck, B., and R. Van Damme. 2001. Evolutionary tradeoffs in locomotor capacities in lacertid lizards: Are splendid sprinters clumsy climbers J. Evol. Biol. 14: 46–54.
-
van Marken Lichtenbelt, W. D.
1992. Digestion in an ectothermic herbivore, the green iguana (Iguana iguana): effect of food composition and body temperature.
Physiol. Zool.
65: 649–673.
10.1086/physzool.65.3.30157975 Google Scholar
- Van Valen, L. 1974. Multivariate structural statistics in natural history. J. Theor. Biol. 54: 235–247.
- Van Valkenburgh, B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology 11: 406–428.
- Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large mammals. Paleobiology 14: 155–173.
- Van Valkenburgh, B., and R. K. Wayne. 1994. Shape divergence associated with size convergence in sympatric East African jackals. Ecology 75: 1567–1581.
- Videla, F. 1983. Hábitos alimentarios en iguanidos del oeste arido de la Argentina. Deserta (Mendoza) 7: 192–202.
- Vitt, L. J., E. R. Pianka, W. E. Cooper Jr., and K. Schwenk. 2003. History and the global ecology of squamate reptiles. Am. Nat. 162: 44–60.
- Wainwright, P. C. 1994. Functional morphology as a tool in ecological research. Pp. 42–59 in P. C. Wainwright and S. M. Reilly, eds. Ecological morphology. Univ. of Chicago Press, Chicago .
- Whitaker, A. H. 1987. The roles of lizards in NZ plant reproductive strategies. NZ J. Bot. 25: 315–328.
- Whiting, A. S., A. M. Bauer, and J. W. Sites Jr. 2003. Phylogenetic relationships and limb loss in sub-Saharan scincine lizards. Mol. Phylogenet. Evol. 29: 582–598.
- Zelditch, M. L., H. D. Sheets, and W. L. Fink. 2000. Spatiotemporal reorganization of growth rates in the evolution of ontogeny. Evolution 54: 1363–1371.
- Zelditch, M. L., H. D. Sheets, and W. L. Fink. 2003. The ontogenetic dynamics of shape disparity. Paleobiology 29: 139–156.
- Zelditch, M. L., D. L. Swiderski, H. D. Sheets, and W. L. Fink. 2004. Geometric morphometrics for biologists: a primer. Academic Press, San Diego , CA .