NATIVE SUPERCOLONIES OF UNRELATED INDIVIDUALS IN THE INVASIVE ARGENTINE ANT
Jes S. Pedersen
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Department of Population Biology, Institute of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
E-mail: [email protected]
Search for more papers by this authorMichael J. B. Krieger
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, New York,10021–6399
Search for more papers by this authorValérie Vogel
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Search for more papers by this authorTatiana Giraud
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Ecologie, Systématique et Evolution, Batiment 360, Université Paris-Sud, F-91405 Orsay cedex, France.
Search for more papers by this authorLaurent Keller
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Search for more papers by this authorJes S. Pedersen
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Department of Population Biology, Institute of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
E-mail: [email protected]
Search for more papers by this authorMichael J. B. Krieger
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, New York,10021–6399
Search for more papers by this authorValérie Vogel
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Search for more papers by this authorTatiana Giraud
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Ecologie, Systématique et Evolution, Batiment 360, Université Paris-Sud, F-91405 Orsay cedex, France.
Search for more papers by this authorLaurent Keller
Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
Search for more papers by this authorAbstract
Abstract Kinship among group members has long been recognized as a main factor promoting the evolution of sociality and reproductive altruism, yet some ants have an extraordinary social organization, called unicoloniality, whereby individuals mix freely among physically separated nests. This type of social organization is not only a key attribute responsible for the ecological dominance of these ants, but also an evolutionary paradox because relatedness between nestmates is effectively zero. Recently, it has been proposed that, in the Argentine ant, unicoloniality is a derived trait that evolved after its introduction into new habitats. Here we test this basic assumption by conducting a detailed genetic analysis of four native and six introduced populations with five to 15 microsatellite loci and one mitochondrial gene. In contrast to the assumption that native populations consist of family-based colonies with related individuals who are aggressive toward members of other colonies, we found that native populations also form supercolonies, and are effectively unicolonial. Moreover, just as in introduced populations, the relatedness between nestmates is not distinguishable from zero in these native range supercolonies. Genetic differentiation between native supercolonies was very high for both nuclear and mitochondrial markers, indicating extremely limited gene flow between supercolonies. The only important difference between the native and introduced populations was that supercolonies were several orders of magnitude smaller in the native range (25-500 m). This size difference has important consequences for our understanding of the evolution and stability of unicolonial structures because the relatively small size of supercolonies in the native range implies that competition can occur between supercolonies, which can act as a break on the spread of selfish mutants by eliminating supercolonies harboring them.
Literature Cited
- Benois, A. 1973. Incidence des facteurs écologiques sur le cycle annuel et l'activité saisonnière de la fourmi d'Argentine, Iridomyrmex humilis Mayr (Hymenoptera, Formicidae), dans la région d'Antibes. Insectes Soc. 20: 267–295.
- Bolger, D. T., A. V. Suarez, K. R. Crooks, S. A. Morrison, and T. J. Case. 2000. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol. Appl. 10: 1230–1248.
- Bourke, A. F. G., and N. R. Franks. 1995. Social evolution in ants. Princeton Univ. Press, Princeton , NJ .
- Cole, F. R., A. C. Medeiros, L. L. Loope, and W. W. Zuehlke. 1992. Effects of the Argentine ant on arthropod fauna of Hawaiian high-elevation shrubland. Ecology 73: 1312–1322.
- Corander, J., P. Waldmann, and M. J. Sillanpää. 2003. Bayesian analysis of genetic differentiation between populations. Genetics 163: 367–374.
- Corander, J., P. Waldmann, P. Marttinen, and M. J. Sillanpää. 2004. BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20: 2363–2369.
- Crozier, R. H. 1979. Genetics of sociality. Pp. 223–286 in H. R. Hermann, ed. Social insects. Academic Press, New York .
-
Crozier, R. H., and
P. Pamilo. 1996. Evolution of social insect colonies: sex allocation and kin selection. Oxford Univ. Press,
Oxford
,
U.K
.
10.1093/oso/9780198549437.001.0001 Google Scholar
- Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.
- Fournier, D., and L. Keller. 2001. Partitioning of reproduction among queens in the Argentine ant, Linepithema humile. Anim. Behav. 64: 697–708.
- Giraud, T., J. S. Pedersen, and L. Keller. 2002. Evolution of supercolonies: the Argentine ants of southern Europe. Proc. Natl. Acad. Sci. USA 99: 6075–6079.
- Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485–486.
- Goudet, J., M. Raymond, T. De Meeüs, and F. Rousset. 1996. Testing differentiation in diploid populations. Genetics 144: 1933–1940.
- Griffin, A. S., and S. A. West. 2002. Kin selection: fact and fiction. Trends Ecol. Evol. 17: 15–21.
- Hamilton, W. D. 1964. The genetical evolution of social behaviour I-II. J. Theor. Biol. 7: 1–52.
- Heller, N. E. 2004. Colony structure in introduced and native populations of the invasive Argentine ant, Linepithema humile. Insectes Soc. 51: 378–386.
- Hölldobler, B., and E. O. Wilson. 1977. The number of queens: an important trait in ant evolution. Naturwissenschaften 64: 8–15.
- Hölldobler, B., and E. O. Wilson. 1990. The ants. Springer-Verlag, New York .
- Holway, D. A., and A. V. Suarez. 2004. Colony-structure variation and interspecific competitive ability in the invasive Argentine ant. Oecologia 138: 216–222.
- Holway, D. A., A. V. Suarez, and T. D. Case. 1998. Loss of intraspecific aggression in the success of a widespread invasive social insect. Science 282: 949–952.
- Human, K. G., and D. M. Gordon. 1996. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105: 405–412.
- Ingram, K. K. 2002a. Plasticity in queen number and social structure in the invasive Argentine ant (Linepithema humile). Evolution 56: 2008–2016.
- Ingram, K. K. 2002b. Flexibility in nest density and social structure in invasive populations of the Argentine ant, Linepithema humile. Oecologia 133: 492–500.
- Ingram, K. K., and D. M. Gordon. 2003. Genetic analysis of dispersal dynamics in an invading population of Argentine ants. Ecology 84: 2832–2842.
- Jaquiéry, J., V. Vogel, and L. Keller. 2005. Multilevel genetic analyses of two European supercolonies of the Argentine ant, Linepithema humile. Mol. Ecol. 14: 589–598.
- Kaufmann, B., J. J. Boomsma, L. Passera, and K. N. Petersen. 1992. Relatedness and inbreeding in a French population of the unicolonial ant Iridomyrmex humilis (Mayr). Insectes Soc. 39: 195–200.
- Keller, L. 1995. Social life: the paradox of multiple-queen colonies. Trends Ecol. Evol. 10: 355–360.
- Keller, L., and D. Fournier. 2002. Lack of inbreeding avoidance in the Argentine ant Linepithema humile. Behav. Ecol. 13: 28–31.
- Keller, L., and L. Passera. 1992. Mating system, optimal number of matings, and sperm transfer in the Argentine ant Iridomyrmex humilis. Behav. Ecol. Sociobiol. 31: 359–366.
- Keller, L., and L. Passera. 1993. Incest avoidance, fluctuating asymmetry, and the consequences of inbreeding in Iridomyrmex humilis, an ant with multiple queen colonies. Behav. Ecol. Sociobiol. 33: 191–199.
- Kelly, J. K. 1994. The effect of scale dependent processes on kin selection: mating and density regulation. Theor. Popul. Biol. 46: 32–57.
- Krieger, M. J. B., and L. Keller. 1999. Low polymorphism at 19 microsatellite loci in a French population of Argentine ants (Linepithema humile). Mol. Ecol. 8: 1078–1080.
- Krieger, M. J. B., and L. Keller. 2000. Mating frequency and genetic structure of the Argentine ant Linepithema humile. Mol. Ecol. 9: 119–126.
- Maddison, W. P., and D. R. Maddison. 1992. MacClade: analysis of phylogeny and character evolution. Sinauer, Sunderland , MA .
- Markin, G. P. 1970. The seasonal life cycle of the Argentine ant, Iridomyrmex humilis (Hymenoptera: Formicidae), in southern California. Ann. Entomol. Soc. Am. 63: 1238–1242.
- Newell, W., and T. C. Barber. 1913. The Argentine ant. US Dep. Agric. Bur. Entomol. Bull. 122: 1–98.
- Pamilo, P. 1983. Genetic differentiation within subdivided populations of Formica ants. Evolution 37: 1010–1022.
- Pamilo, P. 1985. Effect of inbreeding on genetic relatedness. Hereditas 103: 195–200.
- Passera, L. 1994. Characteristics of tramp species. Pp. 23–43 in D. F. Williams, ed. Exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder , CO .
- Passera, L., and L. Keller. 1990. Loss of mating flight and shift in the pattern of carbohydrate storage in sexuals of ants (Hymenoptera, Formicidae). J. Comp. Physiol. B 160: 207–211.
- Passera, L., and L. Keller. 1992. The period of sexual maturation and the age at mating in Iridomyrmex humilis, an ant with intranidal mating. J. Zool. Lond. 228: 141–153.
- Passera, L., and L. Keller. 1994. Mate availability and male dispersal in the Argentine ant Linepithema humile. Anim. Behav. 48: 361–369.
- Pedersen, J. S., and J. J. Boomsma. 1999. Effect of habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis. J. Evol. Biol. 12: 903–917.
- Queller, D. C. 1994. Genetic relatedness in viscous populations. Evol. Ecol. 8: 70–73.
- Queller, D. C. 2000. Pax Argentinica. Nature 405: 519–520.
- Queller, D. C., and K. F. Goodnight. 1989. Estimating relatedness using genetic markers. Evolution 43: 258–275.
- Queller, D. C., and J. E. Strassmann. 1998. Kin selection and social insects. BioScience 48: 165–175.
- Reuter, M., J. S. Pedersen, and L. Keller. 2005. Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity 94: 364–369.
- Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.
- Rissing, S. W., and G. B. Pollock. 1988. Pleometrosis and polygyny in ants. Pp. 179–222 in R. L. Jeanne, ed. Interindividual behavioral variability in social insects. Westview Press, Boulder , CO .
- Ross, K. G. 2001. Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol. Ecol. 10: 265–284.
- Sanders, N. J., N. J. Gotelli, N. E. Heller, and D. M. Gordon. 2003. Community disassembly by an invasive species. Proc. Natl. Acad. Sci. USA 100: 2474–2477.
- Schneider, S., D. Roessli, and L. Excoffier. 2001. Arlequin: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva .
- Starks, P. T. 2003. Selection for uniformity: xenophobia and invasion success. Trends Ecol. Evol. 18: 159–162.
- Sturtevant, A. H. 1938. Essays on evolution. II. On the effects of selection on social insects. Q. Rev. Biol. 13: 74–76.
-
Suarez, A. V.,
N. D. Tsutsui,
D. A. Holway, and
T. J. Case. 1999. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant.
Biol. Invasions
1: 43–53.
10.1023/A:1010038413690 Google Scholar
- Suarez, A. V., D. A. Holway, D. Liang, N. D. Tsutsui, and T. D. Case. 2002. Spatio-temporal patterns of intraspecific aggression in the invasive Argentine ant. Anim. Behav. 64: 697–708.
- Taylor, P. D. 1992. Altruism in viscous populations: an inclusive fitness model. Evol. Ecol. 6: 352–356.
- Tsutsui, N. D., and T. J. Case. 2001. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55: 976–985.
- Tsutsui, N. D., and A. V. Suarez. 2003. The colony structure and population biology of invasive ants. Conserv. Biol. 17: 48–58.
- Tsutsui, N. D., A. V. Suarez, D. A. Holway, and T. J. Case. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. USA 97: 5948–5953.
- Tsutsui, N. D., A. V. Suarez, and R. K. Grosberg. 2003. Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc. Natl. Acad. Sci. USA 100: 1078–1083.
- Visser, D., M. G. Wright, and J. H. Giliomee. 1996. The effect of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), on flower-visiting insects of Protea nitida Mill. (Proteaceae). Afr. Entomol. 4: 285–287.
- Wild, A. L. 2004. Taxonomy and distribution of the Argentine ant, Linepithema humile (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 97: 1204–1215.