TOWARD A REALISTIC MODEL OF MUTATIONS AFFECTING FITNESS
Peter D. Keightley
University of Edinburgh, Institute of Cell, Animal and Population Biology, West Mains Road, Edinburgh EH9 3JT, United Kingdom E-mail: [email protected]
Search for more papers by this authorMichael Lynch
Indiana University, Department of Biology, Bloomington, Indiana 47405 E-mail: [email protected]
Search for more papers by this authorPeter D. Keightley
University of Edinburgh, Institute of Cell, Animal and Population Biology, West Mains Road, Edinburgh EH9 3JT, United Kingdom E-mail: [email protected]
Search for more papers by this authorMichael Lynch
Indiana University, Department of Biology, Bloomington, Indiana 47405 E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract Analysis of a recent mutation accumulation (MA) experiment has led to the suggestion that as many as one-half of spontaneous mutations in Arabidopsis are advantageous for fitness. We evaluate this in the light of data from other MA experiments, along with molecular evidence, that suggest the vast majority of new mutations are deleterious.
Literature Cited
- Bataillon, T. 2000. Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations Heredity 84: 497–501.
- Camara, M. D., and M. Pigliucci 1999. Mutational contributions to genetic variance-covariance matrices: an experimental approach using induced mutations in Arabidopsis thaliana. Evolution. 53: 1692–1703.
- Chavarrias, D., C. López-Fanjul, and A. García-Dorado 2001. The rate of mutation and the homozygous and heterozygous mutational effects for competitive viability: a long-term experiment with Drosophila melanogaster. Genetics. 158: 681–693.
- Elena, S. F., and R. E. Lenski 1997. Test of synergistic interactions among deleterious mutations in bacteria. Nature. 390: 395–398.
- Eyre-Walker, A., P. D. Keightley, N. G. C. Smith, and D. J. Gaffney 2002. Quantifying the slightly deleterious model of molecular evolution. Mol. Biol. Evol.. 19: 2142–2149.
- Fay, J., G. J. Wycoff, and C.-I. Wu 2001. Positive and negative selection on the human genome. Genetics. 158: 1227–1234.
- Frankham, R. 1990. Are responses to artificial selection for reproductive fitness characters consistently asymmetrical? Genet. Res.. 56: 35–42.
- Fry, J. D., P. D. Keightley, S. L. Heinsohn, and S. V. Nuzhdin 1999. New estimates of rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 96: 574–579.
- García-Dorado, A. 1997. The rate and effects distribution of viable mutation in Drosophila: Minimum distance estimation. Evolution. 51: 1130–1139.
- García-Dorado, A., C. López-Fanjul, and A. Caballero 1999. Properties of spontaneous mutations affecting quantitative traits. Genet. Res.. 74: 341–350.
- Keightley, P. D. 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 138: 1315–1322.
- Keightley, P. D., and A. Caballero 1997. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 94: 3823–3827.
- Keightley, P. D., and A. Eyre-Walker 1999. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 153: 515–523.
- Keightley, P. D., and O. Ohnishi 1998. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics. 148: 753–766.
- Keightley, P. D., E. K. Davies, A. D. Peters, and R. G. Shaw 2000. Properties of EMS-induced mutations affecting life history traits in Caenorhabditis elegans and inferences about bivariate distributions of mutation effects. Genetics. 156: 143–154.
- Keightley, P. D., and T. A. Bataillon 2000. Multi-generation maximum likelihood analysis applied to mutation accumulation experiments in Caenorhabditis elegans. Genetics. 154: 1193–1201.
- Kibota, T. T., and M. Lynch 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 381: 694–696.
- Li, W.-H. 1997. Molecular Evolution. Sinauer, Sunderland , MA .
- Lynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva, and J. Willis 1999. Perspective: spontaneous deleterious mutation. Evolution. 53: 645–663.
- Mackay, T. F. C., R. Lyman, and M. S. Jackson 1992. Effects of P elements on quantitative traits in Drosophila melanogaster. Genetics. 130: 315–332.
- Mitchell, J. A., and M. J. Simmons 1977. Fitness effects of EMS-induced mutations on the X chromosome of Drosophila melanogaster II.. Hemizygous fitness effects. Genetics. 87: 775–783.
- Mukai, T. 1970. Viability mutations induced by ethyl methanesulfonate in Drosophila melanogaster. Genetics. 65: 335–348.
- Ohnishi, O. 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster II.. Homozygous effect of polygenic mutations. Genetics. 87: 529–545.
- Ohta, T. 1995. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J. Mol. Evol.. 40: 56–63.
- Schultz, S. T., M. Lynch, and J. H. Willis 1999. Spontaneous deleterious mutation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 96: 11393–11398.
- Shaw, F. J., C. J. Geyer, and R. G. Shaw 2002. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution. 56: 453–463.
- Shaw, R. G., D. L. Byers, and E. Darmo 2000. Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics. 155: 369–378.
- Temin, R. G. 1978. Partial dominance of EMS-induced mutations affecting viability in Drosophila melanogaster. Genetics. 89: 315–340.
- Vassilieva, L. L., and M. Lynch, 1999. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics. 151: 119–129.
- Vassilieva, L. L., A. M. Hook, and M. Lynch 2000. The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution. 54: 1234–1246.
- Wloch, D. M., K. Szafraniec, R. H. Borts, and R. Korona 2001. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics. 159: 441–452.
- Wright, S. I., B. Lauga, and D. Charlesworth 2002. Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol. Biol. Evol.. 19: 1407–1420.
- Yang, H. P., A. Y. Tanikawa, W. A. Van Voorhies, J. C. Silva, and A. S. Kondrashov 2001. Whole-genome effects of ethyl methanesulfonate-induced mutation on nine quantitative traits in out-bred Drosophila melanogaster. Genetics. 157: 1257–1265.
- Zeyl, C., and J. A. G. M. DeVisser 2001. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 157: 53–61.