MODULARITY OF THE ANGIOSPERM FEMALE GAMETOPHYTE AND ITS BEARING ON THE EARLY EVOLUTION OF ENDOSPERM IN FLOWERING PLANTS
William E. Friedman
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309
The authors contributed equally to the work.
Search for more papers by this authorJoseph H. Williams
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309 E-mail: [email protected]
Present address: Department of Botany, University of Tennessee, Knoxville, Tennessee 37996; E-mail: [email protected].
The authors contributed equally to the work.
Search for more papers by this authorWilliam E. Friedman
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309
The authors contributed equally to the work.
Search for more papers by this authorJoseph H. Williams
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309 E-mail: [email protected]
Present address: Department of Botany, University of Tennessee, Knoxville, Tennessee 37996; E-mail: [email protected].
The authors contributed equally to the work.
Search for more papers by this authorPresent address: Department of Botany, University of Tennessee, Knoxville, Tennessee 37996; E-mail: [email protected].
Abstract
Abstract The monosporic seven-celled/eight-nucleate Polygonumtype female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonumtype female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of onto-genetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar- like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio.
Literature Cited
-
Abouheif, E. and nine others.
1999. Establishing homology criteria for regulatory gene networks: prospects and challenges. Pp. 207–225
in
G. R. Bock and
G. Cardew, eds
Homology. Novartis Foundation Symposium 222. John Wiley and Sons,
Chichester
,
U.K
.
10.1002/9780470515655.ch14 Google Scholar
- Alberch, P. 1985. Problems with the interpretation of developmental sequences. Syst. Zool. 34: 46–58.
- Alberch, P., and M. J. Blanco 1996. Evolutionary patterns in on-togenetic transformation: from laws to regularities. Int. J. Dev. Biol. 40: 845–858.
- Arthur, W. 2002. The emerging conceptual framework of evolutionary developmental biology. Nature. 415: 757–764.
- Battaglia, E. 1986. Embryological questions: 7. Do new types of embryo sac occur in Schisandra Ann Bot. (Roma). 44: 69–82.
- Battaglia, E. 1989. Embryological questions: 14. The evolution of the female gametophyte of angiosperms: an interpretative key. Ann. Bot. (Roma). 47: 7–144.
- Batygina, T. B. 1994. Embryology of flowering plants. Russian Academy of Sciences, St Petersburg , Russia .
- Batygina, T. B., T. I. Kravtsova, and I. I. Shamrov 1980. The comparative embryology of some representatives of the orders Nymphaeales and Nelumbonales. Bot. Zh. 65: 1071–1087.
- Batygina, T. B., I. I. Shamrov, and G. E. Kolesova 1982. Embryology of the Nymphaeales and Nelumbonales II. The development of the female embryonic structures. Bot. Zh. 67: 1179–1195.
- Baum, D. A., and M. J. Donoghue 2002. Transference of function, heterotopy, and the evolution of plant development. Pp. 52–69 in Q. C. B. Cronk, R. M. Bateman, and J. A. Hawkins, eds Developmental genetics and plant evolution. Taylor and Francis, London .
- Bhandari, N. N. 1971. Embryology of the Magnoliales and comments on their relationships. J. Arnold Arbor. 52: 1–39, 285–304.
- Boisnard-Lorig, C., A. Colon-Carmona, M. Bauch, S. Hodge, P. Doerner, E. Bancharel, C. Dumas, J. Haseloff, and F. Berger 2001. Dynamic analyses of the expression of the HISTONE:: YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell. 13: 495–509.
- Bolker, J. A. 2000. Modularity in evolution and why it matters to evodevo. Am. Zool. 40: 770–776.
- Brink, R. A., and D. C. Cooper 1947. The endosperm in seed development. Bot. Rev. 13: 423–477.
-
Buell, M. F.
1938. Embryogeny of Acorus calamus.
Bot. Gaz. 99: 556–568.
10.1086/334730 Google Scholar
- Chiarugi, A. 1927. Il gametofito femmineo delle angiosperme nei suoi vari tipi di costruzione e di sviluppo. Nuovo G. Bot. Ital. Nuara Ser. 34: 1–133.
- Conard, H. S. 1905. The waterlilies: a monograph of the genus Nymphaea. Carnegie Institution, Washington , D.C .
- Cook, M. T. 1902. Development of the embryo sac and embryos of Castalia odorata and Nymphaea advena. Bull. Torrey Bot. Club. 29: 211–220.
-
Cook, M. T.
1906. The embryogeny of some Cuban Nymphaeaceae.
Bot. Gaz. 42: 376–395.
10.1086/329039 Google Scholar
- Cronquist, A. 1968. The evolution and classification of flowering plants. Houghton Mifflin, Boston , MA .
- Cronquist, A. 1988. The evolution and classification of flowering plants. New York Botanical Garden, New York .
-
Dahlgren, G.
1991. Steps toward a natural system of the dicotyledons: embryological characters.
Aliso. 13: 107–165.
10.5642/aliso.19911301.05 Google Scholar
- Davis, G. L. 1966. Systematic embryology of the angiosperms. John Wiley, New York .
- Doebley, J., and L. Lukens 1998. Transcriptional regulators and the evolution of plant form. Plant Cell. 10: 1075–1082.
- Donoghue, M. J., and S. M. Scheiner 1992. The evolution of endosperm: a phylogenetic account. Pp. 356–389 in R. Wyatt, ed Ecology and evolution of plant reproduction. Chapman and Hall, New York .
- Doyle, J. A., and P. K. Endress 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int. J. Plant Sci. 161: S121–S153.
-
Earle, T. T.
1938. Embryology of certain Ranales.
Bot. Gaz. 100: 257–275.
10.1086/334784 Google Scholar
- Endress, P. K. 2001. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int. J. Plant Sci. 162: 1111–1140.
- Endress, P. K., and F. B. Sampson 1983. Floral structure and relationships of the Trimeniaceae (Laurales). J. Arnold Arbor. 64: 447–473.
- Endress, P. K., and A. Igersheim 2000. Gynoecium structure and evolution in basal angiosperms. Int. J. Plant Sci. 161: S211–S223.
-
Favre-DuChartre, M.
1976. Interprétations de ľalbumen et des él-éments des sacs embryonaires selon divers auteurs.
Bull. Soc. Bot. Fr. 123: 17–32.
10.1080/00378941.1976.10835663 Google Scholar
-
Favre-DuChartre, M.
1984. Homologies and phylogeny. Pp. 697–734
in
B. M. Johri, ed
Embryology of angiosperms. Springer-Verlag,
Berlin
.
10.1007/978-3-642-69302-1_15 Google Scholar
- Floyd, S. K., V. T. Lerner, and W. E. Friedman 1999. A developmental and evolutionary analysis of embryology in Platanus (Platanaceae), a basal eudicot. Am. J. Bot. 86: 1523–1537.
- Foster, A. S., and E. M. Gifford 1974. Comparative morphology of vascular plants. Freeman, San Francisco , CA .
- Friedman, W. E. 1995. Organismal duplication, inclusive fitness theory, and altruism: understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proc. Natl. Acad. Sci. USA. 92: 3913–3917.
- Friedman, W. E. 1998. The evolution of double fertilization and endosperm: an “historical” perspective. Sex. Plant Reprod. 11: 6–16.
- Friedman, W. E. 2001. Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. C. R. Acad. Sci. Paris. 324: 559–567.
- Friedman, W. E., and S. K. Floyd 2001. Perspective: the origin of flowering plants and their reproductive biology-a tale of two phylogenies. Evolution. 55: 217–231.
- Frohlich, M. W., and D. S. Parker 2000. The mostly male theory of flower evolutionary origins. Syst. Bot. 25: 155–170.
- Furness, C. A., P. J. Rudall, and F. B. Sampson 2002. Evolution of microsporogenesis in angiosperms. Int. J. Plant Sci. 163: 235–260.
- Galati, B. G. 1985. Estudios embriologicos en Cabomba australis (Nymphaeaceae) I. La esporogenesis y las generaciones sexu-adas. Bol. Soc. Argent. Bot. 24: 29–47.
- Gerassimova-Navashina, H. 1961. Fertilization and events leading up to fertilization, and their bearing on the origin of angiosperms. Phytomorphology. 11: 139–146.
- Gould, S. J., and R. C. Lewontin 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205: 581–598.
- Graham, S. W., and R. G. Olmstead 2000. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am. J. Bot. 87: 1712–1730.
- Graham, S. W., P. A. Reeves, A. C. E. Burns, and R. G. Olmstead 2000. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int. J. Plant Sci. 161S: 83–96.
- Grayum, M. H. 1991. Systematic embryology of the Araceae. Bot. Rev. 57: 167–203.
- Grossniklaus, U., C. Spillane, D. R. Page, and C. Kohler 2001. Genomic imprinting and seed development: endosperm formation with and without sex. Curr. Opin. Plant Biol. 4: 21–27.
- Guérin, P. 1904. Les connaissances actuelles sur la fécondation chez les Phanérogames. Maison ďÉditions, Paris .
- Haig, D. 1990. New perspectives on the angiosperm female gametophyte. Bot. Rev. 56: 236–274.
- Haig, D., and M. Westoby 1989. Parent-specific gene expression and the triploid endosperm. Am. Nat. 134: 147–155.
- Haig, D., and M. Westoby 1991. Genomic imprinting in endosperm: its effect on seed development in crosses between species and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos. Trans. R. Soc. Lond. B. 333: 1–13.
-
Hall, B. K.
1999. Evolutionary developmental biology. Kluwer,
Dordrecht
,
The Netherlands
.
10.1007/978-94-011-3961-8 Google Scholar
- Hayashi, Y. 1963a. The embryology of the family Magnoliaceae sens. lat. I. Megasporogenesis, female gametophyte and embyrogeny of Illicium anisatum L. Sci. Rep. Tohoku Univ. Fourth Ser. Biol. 29: 27–33.
- Hayashi, Y. 1963b. The embryology of the family Magnoliaceae sens. lat. II. Megasporogenesis, female gametophyte and embryogeny of Schisandra repanda Radlkofer and Kadsura japonica Dunal. Sci. Rep. Tohoku Univ. Fourth Ser. Biol. 29: 403–411.
- Heo, K., H. van der Werff, and H. Tobe 1998. Embryology and relationships of Lauraceae (Laurales). Bot. J. Linn. Soc. 126: 295–322.
- Hesse, M. 2001. Pollen characters of Amborella trichopoda (Am-borellaceae): a reinvestigation. Int. J. Plant Sci. 162: 201–208.
- Hofmeister, W. 1858. Neuere Beobachtungen über Embryobildung der Phanerogamen. Jahrb. Wiss. Bot. 1: 82–189.
- Huang, B.-Q., and W. F. Sheridan 1994. Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell. 6: 845–861.
- Huang, B.-Q., and W. F. Sheridan 1996. Embryo sac development in the maize indeterminate gametophyte1 mutant: abnormal nuclear behavior and defective microtubule organization. Plant Cell. 8: 1391–1407.
- Hufford, L. 1995. Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am. J. Bot. 82: 655–680.
-
Hufford, L.
1996. Ontogenetic evolution, clade diversification, and ho-moplasy. Pp. 271–301
in
M. J. Sanderson and
L. Hufford, eds
Homoplasy: the recurrence of similarity in evolution. Academic Press,
San Diego
,
CA
.
10.1016/B978-012618030-5/50013-7 Google Scholar
- Hufford, L. 1997. The roles of ontogenetic evolution in the origins of floral homoplasies. Int. J. Plant Sci. 158: S65–S80.
- Hufford, L. 2001. Ontogenetic sequences: homology, evolution, and the patterning of clade diversity. Pp. 27–58 in M. L. Zelditch, ed Beyond heterochrony: the evolution of development. Wiley-Liss, New York .
- Johnston, S. A., T. P. M. den Nijs, S. J. Peloquin, and R. E. Han-neman, Jr. 1980. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57: 5–9.
- Johri, B. M. 1963. Female gametophyte. Pp. 69–103 in P. Ma-heshwari, ed Recent advances in the embryology of angiosperms. International Society of Plant Morphology, Delhi , India .
-
Johri, B. M.,
K. B. Ambegaokar, and
P. S. Srivastava
1992. Comparative embryology of angiosperms. Springer-Verlag,
Berlin
.
10.1007/978-3-642-76395-3 Google Scholar
- Kapil, R. N. 1962. Some recent examples of the value of embryology in relation to taxonomy. Bull. Bot. Surv. India. 4: 57–66.
- Kapil, R. N., and S. Jalan 1964. Schisandra michaux–its embryological and systematic position. Bot. Not. 117: 285–306.
- Kellogg, E. A. 2000. The grasses: a case study in macroevolution. Annu. Rev. Ecol. Syst. 31: 217–238.
- Khanna, P. 1964. Morphological and embryological studies in Nym-phaeaceae I: Euryale ferox Salisb. Proc. Indian Acad. Sci. 59B: 237–243.
-
Khanna, P.
1965. Morphological and embryological studies in Nymphaeaceae II. Brasenia schreberei Gmel. and Nelumbo nucifera Gaertn.
Aust. J. Bot. 13: 379–387.
10.1071/BT9650379 Google Scholar
- Khanna, P. 1967. Morphological and embryological studies in Nymphaeaceae III. Victoria cruziana D'Orb. and Nymphaea stellata Wildl. Bot. Mag. (Tokyo). 80: 305–312.
- Kluge, A. G. 1988. The characteristics of ontogeny. Pp. 57–82 in C. J. Humphries, ed Ontogeny and systematics. Columbia Univ. Press, New York .
- Langille, R. M., and B. K. Hall 1989. Developmental processes, developmental sequences and early vertebrate phylogeny. Biol. Rev. Camb. Philos. Soc. 64: 73–91.
- Lin, B.-Y. 1984. Ploidy barrier to endosperm development in maize. Genetics. 107: 103–115.
- Mabee, P. M. 1993. Phylogenetic interpretation of ontogenetic change: sorting out the actual and artefactual in an empirical case study of centrarchid fishes. Zool. J. Linn. Soc. 107: 175–291.
- Maheshwari, P. 1947. Tetranucleate embryo sacs in angiosperms. Lloydia. 10: 1–18.
- Maheshwari, P. 1950. An introduction to the embryology of angiosperms. McGraw-Hill, New York .
-
Maneval, E.
1914. The development of Magnolia and Liriodendron, and a discussion of the primitiveness of the Magnoliaceae.
Bot. Gaz. 57: 1–31.
10.1086/331215 Google Scholar
- Mathews, S., and M. J. Donoghue 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science. 286: 947–950.
- McLean, R. C., and W. R. Ivimey-Cook 1956. Textbook of theoretical botany. John Wiley and Sons, New York .
- Minelli, A. 2000. Limbs and tails as evolutionarily diverging duplicates of the main body axis. Evol. Dev. 2: 157–165.
- Moore, T., and D. Haig 1991. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7: 45–49.
- Müller, G. B., and G. P. Wagner 1991. Novelty in evolution: Restructuring the concept. Annu. Rev. Ecol. Syst. 22: 229–256.
-
O'Grady, R. T.
1985. Ontogenetic sequences and the phylogenetics of parasitic flatworm life cycles.
Cladistics. 1: 159–170.
10.1111/j.1096-0031.1985.tb00419.x Google Scholar
- Orban, I., and J. Bouharmont 1998. Megagametophyte development of Nymphaea nouchali Burm. f. (Nymphaeaceae). Bot. J. Linn. Soc. 126: 339–348.
- Palser, B. F. 1975. The bases of angiosperm phylogeny: embryology. Ann. Mo. Bot. Gard. 62: 621–646.
- Palser, B. F., J. L. Rouse, and E. G. Williams 1989. Coordinated timetables for megagametophyte development and pollen tube growth in Rhododendron nuttallii from anthesis to early post-fertilization. Am. J. Bot. 76: 1167–1202.
- Parkinson, C. L., K. L. Adams, and J. D. Palmer 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. 9: 1485–1488.
- Poethig, R. S. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science. 250: 923–930.
- Porsch, O. 1907. Versuch einer phylogenetischen Erklärung des Embryosackes und der doppelten Befruchtung der Angiosper-men. Gustav Fisher, Jena , Germany .
- Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen, and M. W. Chase 1999. The earliest angiosperms: evidence from mito-chondrial, plastid and nuclear genomes. Nature. 402: 404–407.
- Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen, and M. W. Chase 2000. Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int. J. Plant Sci. 161: S3–S27.
- Queller, D. C. 1983. Kin selection and conflict in seed maturation. J. Theor. Biol. 100: 153–172.
- Queller, D. C. 1989. Inclusive fitness in a nutshell. Pp. 73–109 in P. H. Harvey and L. Partridge, eds Oxford surveys in evolutionary biology. Vol. 6. Oxford Univ. Press, Oxford , U.K .
-
Raff, R. A.
1996. The shape of life. Univ. of Chicago Press,
Chicago
,
IL
.
10.7208/chicago/9780226256573.001.0001 Google Scholar
- Rajan, S. S. 1976. Is Polygonum type embryo sac really primitive Act Bot. Indica. 4: 89–92.
- Ramji, M. V., and D. Padmanabhan 1965. Developmental studies on Cabomba caroliniana Gray. I. Ovule and carpel. Proc. Indian Acad. Sci. B. 62: 215–223.
- Riedl, R. 1978. Order in living organisms: A systems analysis of evolution. Wiley, New York .
- Russell, S. D. 1993. The egg cell: development and role in fertilization and early embryogenesis. Plant Cell. 5: 1349–1359.
- Sampson, F. B. 2000. Pollen diversity in some modern magnoliids. Int. J. Plant Sci. 161: S193–S210.
-
Sargant, E.
1900. Recent work on the results of fertilization in angiosperms.
Ann. Bot. 14: 689–712.
10.1093/oxfordjournals.aob.a088799 Google Scholar
- Sattler, R. 1988. Homeosis in plants. Am. J. Bot. 75: 1606–1617.
- Schnarf, K. 1931. Vergleichende embryologie der angiospermen. Bornträger, Berlin .
-
Schnarf, K.
1936. Contemporary understanding of embryo sac development among angiosperms.
Bot. Rev. 2: 565–585.
10.1007/BF02868929 Google Scholar
- Schneider, E. L. 1978. Morphological studies of the Nymphaeaceae. IX. The seed of Barclaya longifolia Wall. Bot. Gaz. 139: 223–230.
- Schneider, E. L., and J. M. Jeter 1982. Morphological studies of the Nymphaeaceae. XII. The floral biology of Cabomba caroliniana. Am. J. Bot. 69: 1410–1490.
- Schwarz-Sommer, Z., P. Huijser, W. Nacken, H. Saedler, and H. Sommer 1990. Genetic control of flower development by ho-meotic genes in Antirrhinum majus. Science. 250: 931–941.
-
Seaton, S.
1908. The development of the embryo sac of the Nymphaea.
Bull. Torrey Bot. Club. 35: 283–290.
10.2307/2479220 Google Scholar
- Shamrov, I. I. 1998. Formation of hypostase, podium and postament in the ovule of Nuphar lutea (Nymphaeaceae) and Ribes aureum (Grossulariaceae). Bot. Zh. 83: 3–14.
- Smith, K. K. 2001. Heterochrony revisited: the evolution of developmental sequences. Biol. J. Linn. Soc. 73: 169–186.
- Solntseva, M. P. 1981. Illiciales. Pp. 51–54 in M. S. Yakovlev, ed Comparative embryology of flowering plants. (In Russian). Nauka, Leningrad , Russia .
- Soltis, P. S., D. E. Soltis, and M. W. Chase 1999. Angiosperm phylogeny inferred from multiple genes as a research tool for comparative biology. Nature. 402: 402–404.
-
Stebbins, G. L.
1974. Flowering plants: evolution above the species level. Harvard Univ. Press,
Cambridge
,
MA
.
10.4159/harvard.9780674864856 Google Scholar
-
Strasburger, E.
1879. Die angiospermen und die gymnospermen. Fisher,
Jena
,
Germany
.
10.5962/bhl.title.20324 Google Scholar
- Strasburger, E. 1905. Die samenanlage von Drimys winteri und die endospermbildung bei angiospermen. Flora. 95: 215–231.
- Swamy, B. G. L. 1964. Macrogametophytic ontogeny in Schisandra chinensis. J. Indian Bot. Soc. 43: 391–396.
- Swamy, B. G. L., and K. V. Krishnamurthy 1975. Embryo sac ontogenies in angiosperms–an elucidation. Phytomorphology. 25: 12–18.
- Tabin, C. J., S. B. Carroll, and G. Panganiban 1999. Out on a limb: Parallels in vertebrate and invertebrate limb patterning and the origin of appendages. Am. Zool. 39: 650–663.
- Takhtajan, A. 1976. Neoteny and the origin of flowering plants. Pp. 207–219 in C. B. Beck, ed Origin and early evolution of angiosperms. Columbia Univ. Press, New York .
- Titova, G. E. 1990. The development of the female generative structures in Cabomba caroliniana A. Gray (Cabombaceae). Paper presented at the International Symposium on Embryology and seed reproduction. 3–7 July, Leningrad , Russia .
- Tobe, H., T. F. Stuessy, P. H. Raven, and K. Oginuma 1993. Embryology and karyomorphology of Lactoridaceae. Am. J. Bot. 80: 933–946.
- Tobe, H., T. Jaffre, and P. H. Raven 2000. Embryology of Amborella (Amborellaceae): descriptions and polarity of character states. J. Plant Res. 113: 271–280.
-
van Miegroet, F., and
M. Dujardin
1992. Cytologie et histologie de la reproduction chez le Nymphaea heudelottii.
Can. J. Bot. 70: 1991–1996.
10.1139/b92-247 Google Scholar
- Vijayaraghavan, M. R. 1964. Morphology and embryology of a vesselless dicotyledon– Sarcandra irvingbaileyii Swamy, and the systematic position of Chloranthaceae. Phytomorph. 14: 429–441.
- Vollbrecht, E., and S. Hake 1995. Deficiency analysis of female gametogenesis in maize. Dev. Genet. 16: 44–63.
- Wagner, G. P. 1989. The biological homology concept. Annu. Rev. Ecol. Syst. 20: 51–69.
- Wagner, G. P. 1996. Homologues, natural kinds and the evolution of modularity. Am. Zool. 36: 36–43.
- Wake, D. B. 1991. Homoplasy: the result of natural selection, or evidence of design limitations Am Nat. 138: 543–567.
- Weiss, K. M. 1990. Duplication with variation: Metameric logic in evolution from genes to morphology. Yearb. Phys. Anthropol. 33: 1–23.
- Westoby, M., and B. Rice 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution. 36: 713–724.
- Wiersma, J. H., and C. B. Hellquist 1997. Nymphaeaceae. Pp. 66–71 in Flora of North America Editorial Committee, eds. Flora of North America. Oxford Univ. Press, New York .
- Williams, J. H., and W. E. Friedman 2002. Identification of diploid endosperm in an early angiosperm lineage. Nature. 415: 522–526.
- Willson, M. F., and N. Burley 1983. Mate choice in plants: tactics, mechanisms, and consequences. Princeton Univ. Press, Princeton , NJ .
- Winter, A. N. 1987. Embryology of the family Hydrostemma (Bar-claya) with respect to its systematic position. (In Russian). Institute Biological Science, Leningrad , Russia .
- Winter, A. N. 1990. Peculiarities of the female gametophyte development in the families Nymphaeaceae and Barclayaceae. Paper presented at the International Symposium on Embryology and seed reproduction. 3–7 July, Leningrad , Russia .
- Winter, A. N. 1993. Some aspects of the reproductive biology of Hydrostemma longifolium (Barclaya longifolia) (Barclayaceae). Bot. Zh. 78: 69–83.
- Winter, A. N., and I. I. Shamrov 1991a. Development of the ovule and embryo sac in Nuphar lutea (Nymphaeaceae). Bot. Zh. 76: 378–390.
- Winter, A. N., and I. I. Shamrov 1991b. Megasporogenesis and embryo sac development in representatives of the genera Nymphaea and Victoria (Nymphaeaceae). Bot. Zh. 76: 1716–1728.
-
Wray, G. A.
1999. Evolutionary dissociations between homologous genes and homologous structures. Pp. 189–206
in
G. R. Bock and
G. Cardew, eds
Homology. Novartis Foundation Symposium 222. Wiley,
Chichester
,
U.K
.
10.1002/9780470515655.ch13 Google Scholar
- Yamada, T., H. Tobe, R. Imaichi, and M. Kato 2001. Developmental morphology of the ovules of Amborella trichopoda (Amborellaceae) and Chloranthus serratus (Chloranthaceae). Bot. J. Linn. Soc. 137: 277–290.
- Yoshida, O. 1962. Embryologische studien über Schisandra chinensis Bailey. J. Coll. Arts Sci. Chiba Univ. 3: 459–462.
- Zanis, M. J., D. E. Soltis, P. S. Soltis, S. Mathews, and M. J. Donoghue 2002. The root of angiosperms revisited. Proc. Natl. Acad. Sci. USA. 99: 6846–6853.