GENETIC STRUCTURE OF AGE CLASSES IN CAMELLIA JAPONICA (THEACEAE)
MI YOON CHUNG
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea. E-mail: [email protected]
Search for more papers by this authorBRYAN K. EPPERSON
Department of Forestry, Michigan State University, East Lansing, Michigan 48824. E-mail: [email protected]
Search for more papers by this authorMYONG GI CHUNG
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea. E-mail: [email protected]
Search for more papers by this authorMI YOON CHUNG
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea. E-mail: [email protected]
Search for more papers by this authorBRYAN K. EPPERSON
Department of Forestry, Michigan State University, East Lansing, Michigan 48824. E-mail: [email protected]
Search for more papers by this authorMYONG GI CHUNG
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea
Department of Biology, Gyeongsang National University, Jinju 660-701, The Republic of Korea. E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract.— Camellia japonica L. (Theaceae), an insect- and bird-pollinated, broad-leaved evergreen tree, is widely distributed in Japan and the southern Korean peninsula. The species has a relatively even age distribution within populations, which may influence the spatial genetic structure of different age classes relative to species with typical L-shaped age distributions. To determine whether the internal spatial genetic structure found in seedlings and young individuals carries over into adults, we used allozyme loci, F-statistics, spatial autocorrelation statistics (Moran's I), and coancestry measures to examine changes in genetic structure among seven age classes in a population (60-m × 100-m area) in southern Korea. In seedlings, weak but significant positive values of Moran's I-statistics and coancestry measures were found for distances less than 14 m, which is consistent with a mechanism of limited seed dispersal combined with overlapping seed shadows. This spatial structure, however, dissipates in older age classes, and in adults genetic variation has an essentially random spatial distribution. Morisita's index of dispersion of individuals in each age class showed that seedlings and juveniles are more highly clustered than are older individuals. These results suggest that self-thinning changes the spatial relationships of individuals, and thus genotypes. A multilocus estimate of FST (0.008) shows a small but statistically significant difference in allele frequencies among age classes. In summary, intrapopulation genetic structure within and among age classes of C. japonica was significant but weak. Despite presumably limited seed dispersal, weak spatial genetic structure in juveniles suggests overlapping seed shadows followed by self-thinning during recruitment. The present study also demonstrates that studies of spatial genetic structure focusing on limited numbers of generations may not be sufficient to reveal the entire picture of genetic structure in populations with overlapping generations.
Literature Cited
- Alvarez-Buylla, E. R., and A. A. Garay. 1994. Population genetic structure of Cecropia obtusifolia, a tropical pioneer tree species. Evolution 48: 437–453.
- Alvarez-Buylla, E. R., A. Chaos, D. Pinero, and A. A. Garay. 1996. Demographic genetics of a pioneer tropical tree species: patch dynamics, seed dispersal, and seed banks. Evolution 50: 1155–1166.
- Barbujani, G. 1987. Autocorrelation of gene frequencies under isolation by distance. Genetics 117: 777–782.
- Berg, E. E., and J. L. Hamrick. 1995. Fine-scale genetic structure of a turkey oak forest. Evolution 49: 110–120.
- Boshier, D. H., M. R. Chase, and K. S. Bawa. 1995. Population genetics of Cordia alliodora (Boraginaceae), a neotropical tree3. Gene flow, neighborhood, and population substructure. Am. J. Bot. 82: 484–490.
- Burke, J. M., M. R. Bulger, R. A. Wesselingh, and M. L. Arnold. 2000. Frequency and spatial patterning of clonal reproduction in Louisiana iris hybrid populations. Evolution 54: 137–144.
- Casgrain, P. 2001. Permute! Ver.3.4 alpha. Available at http://www.fas.umontreal.ca/biol/casgrain/en/labo/permute.
- Chung, M. G., and B. K. Epperson. 1999. Spatial genetic structure of clonal and sexual reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution 53: 1068–1078.
- Chung, M. G., and S. S. Kang. 1996. Genetic variation within and among populations of Camellia japonica (Theaceae) in Korea. Can. J. For. Res. 26: 537–542.
- Chung, M. G., M. Y. Chung, G. S. Oh, and B. K. Epperson. 2000. Spatial genetic structure in a Neolitsea sericea population (Laur-aceae). Heredity 85: 490–497.
- Chung, M. Y., J. Nason, M. G. Chung, K.-J. Kim, C.-W. Park, B.-Y. Sun, and J.-H. Pak. 2002. Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). Am. J. Bot. 89: 1229–1236.
- Chung, M. Y., J. Nason, B. K. Epperson, and M. G. Chung. 2003. Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity 90: 98–106.
- Clayton, J. W., and D. N. Tretiak. 1972. Amine citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29: 1169–1172.
- Cliff, A. D., and J. K. Ord. 1981. Spatial processes-methods and applications. Pion Limited, London .
- Cockerham, C. C. 1969. Variance of gene frequencies. Evolution 23: 72–84.
-
Crow, J. F., and
M. Kimura. 1970. An introduction to population genetics theory. Harper and Row,
New York
.
10.1006/tpbi.1995.1025 Google Scholar
- Doligez, A., and H. I. Joly. 1997. Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79: 72–82.
- Epperson, B. K. 1993. Recent advances in correlation analysis of spatial patterns of genetic variation. Evol. Biol. 27: 95–155.
- Epperson, B. K., and E. Alvarez-Buylla. 1997. Limited seed dispersal and genetic structure in life stages of Cecropia obtusifolia. Evolution 51: 275–282.
- Epperson, B. K., and M. G. Chung. 2001. Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am. J. Bot. 88: 1006–1010.
- Epperson, B. K., and T. Li. 1996. Measurement of genetic structure within populations using Moran's spatial autocorrelation statistics. Proc. Natl. Acad. Sci. USA 93: 10528–10532.
- Epperson, B. K., Z. Huang, and T. Li. 1999. Spatial genetic structure of multiallelic loci. Genet. Res. Camb. 73: 251–261.
- Foster, P. F., and V. L. Sork. 1997. Population and genetic structure of the West African rain forest liana Ancistrocladus korupensis (Ancistrocladaceae). Am. J. Bot. 84: 1078–1091.
- Frankel, O. H., A. H. D. Brown, and J. J. Burdon. 1995. The conservation of plant biodiversity. Cambridge Univ. Press, Cambridge , U.K .
- Geburek, T., and P. Tripp-Knowles. 1994. Genetic architecture in bur oak, Quercus macrocarpa (Fagaceae), inferred by means of spatial autocorrelation analysis. Plant Syst. Evol. 189: 63–74.
- Goudet, J. 1995. FSTAT. Ver. 1.2: A computer program to calculate F-statistics. J. Hered. 86: 485–488.
- 2000. FSTAT, a program to estimate and test gene diversities and fixation indices (Ver.2.9.1). Available at http://www.unil.ch/izea/softwares/fstat.html.d.
- Gregorius, H. R., J. Krauhausen, and G. Muller-Starck. 1986. Spatial and temporal genetic differentiation among the seed in a stand of Fagus sylvatica. Heredity 57: 255–262.
-
Hamrick, J. L., and
M. D. Loveless. 1986. The influence of seed dispersal mechanisms on the genetic structure of plant populations. Pp.
211–223
in
A. Estrada and
T. H. Fleming, eds.
Fru-givores and seed dispersal. Dr. W. Junk,
Dordrecht
,
The Netherlands
.
10.1007/978-94-009-4812-9_20 Google Scholar
- Hamrick, J. L., and J. D. Nason. 1996. Consequences of dispersal in plants. Pp. 203–236 in O. E. Rhodes, R. K. Chesser, and M. H. Smith, eds. Population dynamics in ecological space and time. Univ. of Chicago Press, Chicago , IL .
- Hamrick, J. L., D. A. Murawski, and J. D. Nason. 1993. The influences of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107/108: 281–297.
- Harper, J. L. 1977. Population biology of plants. Academic Press, London .
- Hartl, D. L., and A. G. Clark. 1997. Principles of population genetics. 3rd ed. Sinauer, Sunderland , MA .
- Haufler, C. H. 1985. Enzyme variability and modes of evolution in Bommeria (Pteridaceae). Syst. Bot. 10: 92–104.
- Hossaert-McKey, M., M. Valero, D. Magda, M. Jarry, J. Cuguen, and P. Vernet. 1996. The evolving genetic history of a population of Lathyrus sylvestris: evidence from temporal and spatial genetic structure. Evolution 50: 1808–1821.
- Jain, S. K., and A. D. Bradshaw. 1966. Evolutionary divergence among adjacent plant populations. I. Evidence and its theoretical analysis. Heredity 21: 407–441.
- Kalisz, S., J. D. Nason, F. A. Hanzawa, and S. J. Tonsor. 2001. Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history and selection. Evolution 55: 1560–1568.
-
Kitamura, K.,
K. Shimada,
K. Nakashima, and
S. Kawano. 1997a. Demographic genetics of the Japanese beech, Fagus crenata, at Ogawa Forest Preserve, Ibaraki, Central Honshu, Japan.
I. spatial genetic structuring in local populations. Plant Species Biol.
12: 107–135.
10.1111/j.1442-1984.1997.tb00162.x Google Scholar
-
1997b. Demographic genetics of the Japanese beech, Fagus crenata, at Ogawa Forest Preserve, Ibaraki, Central Honshu, Japan. II. Genetic structuring among size-classes in local populations.
Plant Species Biol.
12: 137–155.
10.1111/j.1442-1984.1997.tb00163.x Google Scholar
- Lewis, P. O., and D. Zaykin. 2001. Genetic Data Analysis: Computer program for the analysis of allelic data. Ver. 1.0 (d16c). Available at http://www.lewis.eeb.uconn.edu/lewishome/software.html.
- Linhart, Y. B., J. B. Mitton, K. B. Sturgeon, and M. L. Davis. 1981. Genetic variation in space and time in population of ponderosa pine. Heredity 46: 407–426.
- Loiselle, B. A., V. L. Sork, J. Nason, and C. Graham. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82: 1420–1425.
- Manabe, T., and S. Yamamoto. 1997. Spatial distribution of Eurya japonica in an old-growth evergreen broad-leaved forest, southwestern Japan. J. Veget. Sci. 8: 761–772.
- Manabe, T., N. Nishimura, M. Miura, and S. Yamamoto. 2000. Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in Japan. Plant Ecol. 151: 181–197.
- Mitton, J. B., Y. B. Linhart, K. B. Sturgeon, and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J. Hered. 70: 86–89.
- Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distributional patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E Biol. 2: 215–235.
- Oh, G. S., S. S. Kang, and M. G. Chung. 1996. Temporal genetic structure in Camellia japonica (Theaceae). Genes Genet. Syst. 71: 9–13.
- Parker, K. C., J. L. Hamrick, A. J. Parker, and J. D. Nason. 2001. Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity 87: 99–113.
- Peakall, R., and A. J. Beattie. 1996. Ecological and genetic consequences of pollination by sexual deception in the orchid Ca-ladenia tentaculata. Evolution 50: 2207–2220.
- Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.
- Ritland, K. 1989. Gene identity and the genetic demography of plant populations. Pp. 181–199 in A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds. Plant population genetics, breeding and genetic resources. Sinauer, Sunderland , MA .
- Roberds, J. H., and M. T. Conkle. 1984. Genetic structure in loblolly pine stands: allozyme variation in parents and progeny. For. Sci. 30: 319–329.
- Sakai, A. K., and N. L. Oden. 1983. Spatial pattern of sex expression in silver maple (Acer saccharium L.): Morisita's index and spatial autocorrelation. Am. Nat. 122: 489–508.
- Sato, T., H. Tanouchi, and K. Takeshita. 1994. Initial regenerative processes of Distylium racemosum and Persea thunbergii in an evergreen broad-leaved forest. J. Plant Res. 107: 331–337.
- Schaal, B. A., and D. A. Levin. 1976. The demographic genetics of Liatris cylindracea Michx. (Compositae). Am. Nat. 110: 191–206.
- Schnabel, A., and J. L. Hamrick. 1990. Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae). Am. J. Bot. 77: 1060–1069.
- Schoen, P. E., and R. G. Latta. 1989. Spatial autocorrelation of genotypes in populations of Impatiens pallida and Impatiens capensis. Heredity 63: 181–189.
- Šidàk, Z. 1967. Confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62: 626–633.
- Slatkin, M. 1977. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. Popul. Biol. 12: 253–262.
- Smouse, P. E., and R. Peakall. 1999. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82: 561–573.
- Sokal, R. R., and N. L. Oden. 1978. Spatial autocorrelation in biology1. Methodology. Biol. J. Linn. Soc. 10: 199–249.
- Soltis, D. E., C. H. Haufler, D. C. Darrow, and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, and staining schedules. Am. Fern J. 73: 9–27.
- Tonsor, S. J., S. Kalisz, and J. Fisher. 1993. A life history based study of population structure: seed bank to adults in Plantago lanceolata. Evolution 47: 833–843.
- Ueno, S., N. Tomaru, H. Yoshimaru, T. Manabe, and S. Yamamoto. 2000. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Ecol. 9: 647–656.
- Wade, M. J., and D. E. McCauley. 1988. Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42: 995–1005.
-
Weeden, N. F., and
J. F. Wendel. 1989. Genetics of plant isozymes. Pp.
46–72
in
D. E. Soltis and
P. S. Soltis, eds.
Isozymes in plant biology. Discorides,
Portland
,
OR
.
10.1007/978-94-009-1840-5_3 Google Scholar
- Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.
-
Wendel, N. F., and
C. R. Parks. 1982. Genetic control of isozyme variation in Camellia japonica L. (Theaceae).
J. Hered.
7: 197–204.
10.1093/oxfordjournals.jhered.a109617 Google Scholar
- 1985. Genetic diversity and population structure in Camellia japonica L. (Theaceae). Am. J. Bot. 72: 52–65.
- Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat. 56: 330–338.
- 1943. An analysis of local variability of flower color in Linanthus parryae. Genetics 28: 139–156.
- 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.
- Yamamoto, S. 1992. Gap characteristics and gap regeneration in primary evergreen broad-leaved forests of western Japan. Bot. Mag. Tokyo 105: 29–45.
- Yeh, F. C., R. C. Yang, and T. B. J. Boyle. 1999. POPGENE. Ver. 1.31. Microsoft Windows-based free ware for population genetic analysis. University of Alberta and Centre for International Forestry Research, Alberta, Canada. Available at http://www.ualberta.ca/~fyeh/index/htm.
- Young, A. G., and H. G. Merriam. 1994. Effects of forest fragmentation on the spatial genetic structure of Acer saccharum Marsh. (sugar maple) populations. Heredity 72: 201–208.
-
Yumoto, T.
1987. Pollination systems in a warm temperate evergreen broad-leaved forest on Yaku Island.
Ecol. Res.
2: 133–145.
10.1007/BF02346922 Google Scholar