PERSPECTIVE: THE ORIGIN OF FLOWERING PLANTS AND THEIR REPRODUCTIVE BIOLOGY–A TALE OF TWO PHYLOGENIES
William E. Friedman
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309 1 E-mail: [email protected]
Search for more papers by this authorSandra K. Floyd
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309 1 E-mail: [email protected]
Search for more papers by this authorWilliam E. Friedman
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309 1 E-mail: [email protected]
Search for more papers by this authorSandra K. Floyd
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309 1 E-mail: [email protected]
Search for more papers by this authorAbstract.
Recently, two areas of plant phylogeny have developed in ways that could not have been anticipated, even a few years ago. Among extant seed plants, new phylogenetic hypotheses suggest that Gnetales, a group of nonflowering seed plants widely hypothesized to be the closest extant relatives of angiosperms, may be less closely related to angiosperms than was believed. In addition, recent phylogenetic analyses of angiosperms have, for the first time, clearly identified the earliest lineages of flowering plants: Amborella, Nymphaeales, and a clade that includes Illiciales/Trimeniaceae/Austrobaileyaceae. Together, the new seed plant and angiosperm phylogenetic hypotheses have major implications for interpretation of homology and character evolution associated with the origin and early history of flowering plants. As an example of the complex and often unpredictable interplay of phylogenetic and comparative biology, we analyze the evolution of double fertilization, a process that forms a diploid embryo and a triploid endosperm, the embryo-nourishing tissue unique to flowering plants. We demonstrate how the new phylogenetic hypotheses for seed plants and angiosperms can significantly alter previous interpretations of evolutionary homology and firmly entrenched assumptions about what is synapomorphic of flowering plants. In the case of endosperm, a solution to the century-old question of its potential homology with an embryo or a female gametophyte (the haploid egg-producing generation within the life cycle of a seed plant) remains complex and elusive. Too little is known of the comparative reproductive biology of extant nonflowering seed plants (Gnetales, conifers, cycads, and Ginkgo) to analyze definitively the potential homology of endosperm with antecedent structures. Remarkably, the new angiosperm phylogenies reveal that a second fertilization event to yield a biparental endosperm, long assumed to be an important synapomorphy of flowering plants, cannot be conclusively resolved as ancestral for flowering plants. Although substantive progress has been made in the analysis of phylogenetic relationships of seed plants and angiosperms, these efforts have not been matched by comparable levels of activity in comparative biology. The consequence of inadequate comparative biological information in an age of phylogenetic biology is a severe limitation on the potential to reconstruct key evolutionary historical events.
Literature Cited
- Allen, G. S. 1946. Embryogeny and development of the apical meristems of PsudotsugaI. Fertilization and early embryogeny. Am. J. Bot. 33: 666–677.
- Axsmith, B. J., E. L. Taylor, and T. N. Taylor. 1998. The limitations of molecular systematics: a palaeobotanical perspective. Taxon 47: 105–108.
- Barkman, T. J., G. Chenery, J. R. McNeal, J. Lyons-Weiler, and C. W. de Pamphilis. 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl. Acad. Sci. USA. 97: 13166–13171.
- Bowe, L. M., G. Coat, and C. W. DePamphilis. 2000. Phylogeny of seed plants based on all three plant genomic compartments: extant gymnosperms are monophyletic and Gnetales are derived conifers. Proc. Natl. Acad. Sci. USA 97: 4092–4097.
-
Brink, R. A., and
D. C. Cooper. 1940. Double fertilization and development of the seed in angiosperms.
Bot. Gaz.
102: 1–25.
10.1086/334932 Google Scholar
- Bryan, G. S., and R. I. Evans. 1957. Types of development from the central nucleus of Zamia umbrosa. Am. J. Bot. 44: 404–415.
-
Brooks, D. R.
1996. Explanations of homoplasy at different levels of biological organization. Pp.
3–36
in
M. J. Sanderson and
L. Hufford, eds.
Homoplasy: the recurrence of similarity in evolution. Academic Press,
San Diego
,
CA
.
10.1016/B978-012618030-5/50003-4 Google Scholar
-
Buell, M. F.
1938. Embryology of Acorus calamus.
Bot. Gaz.
99: 556–568.
10.1086/334730 Google Scholar
- Burger, W. C. 1977. The Piperales and the monocots: alternate hypotheses for the origin of monocotyledonous flowers. Bot. Rev. 43: 345–393.
- Burger, W. C. 1981. Heresy revived: the monocot theory of angiosperm origin. Evol. Theory 5: 189–225.
- Cantino, P. D. 1985. Phylogenetic inference from nonuniversal derived character states. Syst. Bot. 10: 119–122.
- Carlquist, S. 1996. Wood, bark, and stem anatomy of Gnetales: a summary. Int. J. Plant Sci. 157: S58–S76.
- Carmichael, J. S., and W. E. Friedman. 1995. Double fertilization in Gnetum gnemon, a nonflowering seed plant: the relationship between the cell cycle and sexual reproduction. Plant Cell 7: 1975–1988.
- Carmichael, J. S., and W. E. Friedman. 1996. Double fertilization in Gnetum gnemon (Gnetaceae): its bearing on the evolution of sexual reproduction within the Gnetales and the anthophyte clade. Am. J. Bot. 83: 767–780.
- Cass, D., and W. A. Jensen. 1970. Fertilization in barley. Am. J. Bot. 57: 62–70.
-
Chamberlain, C. J.
1899. Oogenesis in Pinus laricio.
Bot. Gaz.
27: 268–279.
10.1086/327827 Google Scholar
-
Chamberlain, C. J.
1906. The ovule and female gametophyte of Dioon.
Bot. Gaz.
42: 321–358.
10.1086/329037 Google Scholar
-
Chamberlain, C. J.
1912. Morphology of Ceratozamia.
Bot. Gaz.
53: 1–19.
10.1086/330707 Google Scholar
- Charnov, E. L. 1979. Simultaneous hermaphroditism and sexual selection. Proc. Natl. Acad. Sci. USA 76: 2480–2484.
- Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedrén, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn Jr., S. W. Graham, S. C. H. Barrett, S. Dayanandan, and V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard. 80: 528–580.
- Chaw, S.-M., A. Zharkikh, H. M. Sung, T. C. Lau, and W. H. Li. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution–analysis of nuclear 18S ribosomal-RNA. Mol. Biol. Evol. 14: 56–68.
- Chaw, S.-M., C. L. Parkinson, Y. Cheng, T. M. Vincent, and J. D. Palmer. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl. Acad. Sci. USA 97: 4086–4091.
- Chitralekha, P., and N. N. Bhandari. 1993. Cellularization of freenuclear endosperm in Ranunculus scleratus Linn. Phytomorphology 43: 165–183.
-
Cook, M. T.
1909. Notes on the embryology of the Nymphaeaceae.
Bot. Gaz.
48: 56–60.
10.1086/329936 Google Scholar
-
Coulter, J. M.
1911. The endosperm of angiosperms.
Bot. Gaz.
51: 380–385.
10.1086/330667 Google Scholar
- Coulter, J. M., and C. J. Chamberlain. 1903. Morphology of angiosperms. D. Appleton and Co., New York .
- Crane, P. R. 1985. Phylogenetic relationships in seed plants. Cladistics 1: 329–348.
- Crane, P. R., E. M. Friis, and K. R. Pedersen. 1994. Paleobotanical evidence on the early radiation of magnoliid angiosperms. Plant Syst. Evol. 8: S51–S72.
- Crane, P. R., E. M. Friis, and K. R. Pedersen. 1995. The origin and early diversification of angiosperms. Nature 374: 27–33.
- Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia Univ. Press, New York .
- Cronquist, A. 1988. The evolution and classification of flowering plants. 2d ed. New York Botanical Garden, Bronx , NY .
- Dahlgren, R. M. T. 1980. A revised system of classification of angiosperms. Bot. J. Linn. Soc. 80: 91–124.
-
Dahlgren, R. M. T.
1983. General aspects of angiosperm evolution and macrosystematics.
Nordic J. Bot.
3: 119–149.
10.1111/j.1756-1051.1983.tb01448.x Google Scholar
-
Dahlgren, R. M. T., and
K. Bremer. 1985. Major clades of angiosperms.
Cladistics
1: 349–368.
10.1111/j.1096-0031.1985.tb00433.x Google Scholar
- D'Alascio, R. 1974. Ultrastructural study of fertilization of Linum catharticum L. C. R. Hebd. Seances Acad. Sci. Ser. D 279: 263–265.
- Dilcher, D. L. 1989. The occurrence of fruits with affinities to Ceratophyllaceae in lower and mid-Cretaceous sediments. Am. J. Bot. 76: 162.
- Donoghue, M. J., and J. A. Doyle. 1989a. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. Pp. 17–45 in P. R. Crane & S. Blackmore, eds. Evolution, systematics, and fossil history of the Hamamelidae. Vol. 1. Introduction and ‘lower’ Hamamelidae. Clarendon Press, Oxford , U.K .
- P. R. Crane & S. Blackmore, eds. 1989b. Phylogenetic studies of seed plants and angiosperms based on morphological characters. Pp. 181–193 in B. Fernholm, K. Bremer, & H. Jornvall, eds. The hierarchy of life. Elsevier, Amsterdam .
- P. R. Crane & S. Blackmore, eds. 2000. Seed plant phylogeny: demise of the anthophyte hypothesis Curr. Biol. 10: 106–109.
- Doyle, J. A. 1996. Seed plant phylogeny and the relationships of Gnetales. Int. J. Plant Sci. 157: S3–S39.
- Doyle, J. A. 1998. Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol. Phyl. Evol. 9: 448–462.
- Doyle, J. A., and M. J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot. Rev. 52: 321–431.
- Doyle, J. A., and M. J. Donoghue. 1992. Fossils and seed plant phylogenies reanalyzed. Brittonia 44: 89–106.
- Doyle, J. A., and M. J. Donoghue. 1993. Phylogenies and angiosperm diversification. Paleobiology 19: 141–167.
- Doyle, J. A., M. J. Donoghue, and E. A. Zimmer. 1994. Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann. MO. Bot. Gard. 81: 419–450.
- Endress, P. K. 1987. The early evolution of the angiosperm flower. Trends Ecol. Evol. 2: 300–304.
- Endress, P. K. 1994. Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst. Evol. 192: 79–97.
-
Endress, P. K.
1995. Floral structure and evolution in Ranunculaceae.
Plant Syst. Evol.
9: 47–61.
10.1007/978-3-7091-6612-3_5 Google Scholar
- Endress, P. K. 1997. Evolutionary biology of flowers: prospects for the next century. Pp. 99–119 in K. Iwatsuki & P. H. Raven, eds. Evolution and diversification of land plants. Springer-Verlag, Tokyo .
- Endress, P. K., and A. Igersheim. 1997. Gynoecium diversity and systematics of the Laurales. Bot. J. Linn. Soc. 125: 93–168.
- Endress, P. K., and A. Igersheim. 2000. Gynoecium structure and evolution of basal angiosperms. Int. J. Plant Sci. 161: S211–S223.
- Floyd, S. K., and W. E. Friedman. 2000. Evolution of endosperm developmental patterns among basal flowering plants. Int. J. Plant Sci. 161: S57–S81.
- Floyd, S. K., V. T. Lerner, and W. E. Friedman. 1999. A developmental and evolutionary analysis of embryology in Platanus (Platanaceae), a basal eudicot. Am. J. Bot. 86: 1523–1537.
- Folsom, M. W., and D. D. Cass. 1992. Embryo sac development in soybean: the central cell and aspects of fertilization. Am. J. Bot. 79: 1407–1417.
- Friedman, W. E. 1990. Double fertilization in Ephedra, a non-flowering seed plant: its bearing on the origin of angiosperms. Science 247: 951–954.
- Friedman, W. E. 1991. Double fertilization in Ephedra trifurca, a non-flowering seed plant: the relationship between fertilization events and the cell cycle. Protoplasma 165: 106–120.
- Friedman, W. E. 1992a. Evidence of a pre-angiosperm origin of endosperm: implications for the evolution of flowering plants. Science 255: 336–339.
- Friedman, W. E. 1992b. Double fertilization in nonflowering seed plants. Int. Rev. Cytol. 140: 319–355.
- Friedman, W. E. 1994. The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm. Am. J. Bot. 81: 1468–1486.
- Friedman, W. E. 1995. Organismal duplication, inclusive fitness theory and altruism: understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proc. Natl. Acad. Sci. USA 92: 3913–3917.
- Friedman, W. E. 1998. The evolution of double fertilization and endosperm: an “historical” perspective. Sex. Plant Repro. 11: 6–16.
- Friedman, W. E. 2001a. Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. C. R. Acad. Sci. Paris In press.
- Friedman, W. E. 2001b. Comparative embryology of basal angiosperms. Curr. Opin. Plant Biol. 4: 14–20.
- Friedman, W. E., and J. S. Carmichael. 1996. Evolution of fertilization patterns in Gnetales: implications for understanding reproductive diversification among anthophytes. Int. J. Plant Sci. 157: S77–S94.
- Friedman, W. E., and J. S. Carmichael. 1998. Heterochrony and developmental innovation: evolution of female gametophyte ontogeny in Gnetum, a highly apomorphic seed plant. Evolution 52: 1016–1030.
- Friis, E. M. 1996. Flower evolution. Prog. Bot. 57: 253–280.
- Friis, E. M., and P. K. Endress. 1990. Origin and evolution of angiosperm flowers. Adv. Bot. Res. 17: 99–162.
- Friis, E. M., P. R. Crane, and K. R. Pedersen. 1986. Floral evidence for Cretaceous chloranthoid angiosperms. Nature 320: 163–164.
- Friis, E. M., K. R. Pedersen, and P. R. Crane. 1994a. Angiosperm floral structures from the early Cretaceous of Portugal. Plant Syst. Evol. 8: S31–S49.
- Friis, E. M., K. R. Pedersen, and P. R. Crane. 1994b. Early angiosperm diversification: the diversity of pollen associated with reproductive structures in early Cretaceous floras from Portugal. Ann. MO. Bot. Gard. 86: 259–296.
- Friis, E. M., K. R. Pedersen, and P. R. Crane. 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in early Cretaceous floras from Portugal. Ann. MO. Bot. Gard. 86: 259–296.
- Friis, E. M., K. R. Pedersen, and P. R. Crane. 2000. Reproductive structure and organization of basal angiosperms from the Early Cretaceous (Barremian or Aptian) of Western Portugal. Int. J. Plant Sci. 161 (supplement): 169–182.
- Frohlich, M. W., and D. S. Parker. 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25: 155–170.
- Gao, X. P., D. Francis, J. C. Ormrod, and M. D. Bennett. 1992. An electron microsopic study of double fertilization in allohexaploid wheat Triticum aestivum L. Ann. Bot. 70: 561–568.
- Goremykin, V., V. Bobrova, J. Pahnke, A. Troitsky, A. Antonov, and W. Martin. 1996. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support Gnetalean affinities of angiosperms. Mol. Biol. Evol. 13: 383–396.
- Graham, S. W., and R. G. Olmstead. 2000. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am. J. Bot. 87: 1712–1730.
- Graham, S., P. Reeves, A. C. E. Burns, and R. G. Olmstead. 2000. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int. J. Plant Sci. (supplement) 161: 83–96.
- Guignard, L. 1899. Sur les antherozoides et la double copulation sexuelle chez les vegetaux angiosperms. C. R. Acad. Sci., Paris 128: 864–871.
- Haig, D., and M. Westoby. 1988. Inclusive fitness, seed resources, and maternal care. Pp. 60–79 in J. Lovett Doust and L. Lovett Doust, eds. Plant reproductive ecology patterns and strategies. Oxford Univ. Press, Oxford , U.K .
- Haig, D., and M. Westoby. 1989. Parent-specific gene expression and the triploid endosperm. Am. Nat. 134: 147–155.
- Hamby, R. K., and E. A. Zimmer. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pp. 51–90 in P. Soltis, D. Soltis, & J. J. Doyle, eds. Molecular systematics of plants. Univ. of Illinois Press, Urbana .
- Hansen, A., S. Hansmann, T. Samigullin, A. Antonov, and W. Martin. 1999. Gnetum and the angiosperms: molecular evidence that their shared morphological characters are convergent, rather than homologous. Mol. Biol. Evol. 16: 1006–1009.
- Hasebe, M., M. Ito, R. Kofuji, K. Iwatsuki, and K. Ueda. 1992. Phylogenetic relationships in Gnetophyta deduced from rbcL gene sequences. Bot. Mag. Tokyo 105: 385–391.
- Hause, G., and M.-B. Schröder. 1987. Reproduction in Triticale. 2. Karyogamy. Protoplasma 139: 100–104.
- Hayashi, Y. 1963. The embryology of the family Magnoliaceae sens. lat. I. Megasporogenesis, female gametophyte and embryogeny of Illicium anisatum L. Sci. Rep. Tohoku Univ. Ser. IV (Biology) 29: 27–33.
- Heo, K., and H. Tobe. 1995. Embryology and relationships of Gyrocarpus and Hernandia (Hernandiaceae). J. Plant Res. 108: 327–341.
- Hill, C. R., and P. R. Crane. 1982. Evolutionary cladistics and the origin of angiosperms. Pp. 269–361 in K. A. Joysey and A. E. Friday, eds. Problems of phylogenetic reconstruction. Academic Press, London .
- Hoot, S. B., S. Magallón, and P. R. Crane. 1999. Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Ann. MO. Bot. Gard. 86: 1–32.
-
Hutchinson, A. H.
1915. Fertilization in Abies balsamea.
Bot. Gaz.
60: 457–472.
10.1086/331688 Google Scholar
- Ikeno, S. 1901. Contribution a l'étude de la fécondation chez le Ginkgo biloba. Ann. Sci. Nat. Bot. VIII 13: 305–318.
- Igersheim, A., and P. K. Endress. 1997. Gynoecium diversity and systematics of the Magnoliales and winteroids. Bot. J. Linn. Soc. 124: 213–271.
- Jensen, W. A., and D. B. Fisher. 1967. Cotton embryogenesis: double fertilization. Phytomorphology 17: 261–269.
-
Johri, B. M.,
K. B. Ambegaokar, and
P. S. Srivastava. 1992. Comparative embryology of angiosperms. Springer-Verlag,
Berlin
.
10.1007/978-3-642-76395-3 Google Scholar
- Kaplan, D. R., and T. J. Cooke. 1997. Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9: 1903–1919.
-
Khanna, P.
1965. Morphological and embryological studies in Nymphaeaceae. II. Brasenia schreberei Gmel. and Nelumbo nucifera Gaertn.
Aust. J. Bot.
13: 379–387.
10.1071/BT9650379 Google Scholar
- Khanna, P. 1967. Morphological and embryological studies in Nymphaeaceae. III. Victoria cruziana D'Oor., and Nymphaea stellata Willd. Bot. Mag. Tokyo 80: 305–312.
- Kranz, E. P., von Wiegen, H. Quader, and H. Lorz. 1998. Endosperm development after fusion of isolated, single maize sperm and central cells in vitro. Plant Cell 10: 511–524.
-
Land, W. J. G.
1902. A morphological study of Thuja.
Bot. Gaz.
34: 249–259.
10.1086/328288 Google Scholar
- LeMonnier, G. 1887. Sur la valeur morphologique de l'albumen chez les Angiosperms. J. Bot. 1: 140–142.
- Les, D. H. 1988. The origin and affinities of the Ceratophyllaceae. Taxon 37: 326–345.
- Les, D. H., D. K. Garvin, and C. F. Wimpee. 1991. Molecular evolutionary history of ancient aquatic angiosperms. Proc. Natl. Acad. Sci. USA 88: 10119–10123.
- Loconte, H., and D. W. Stevenson. 1990. Cladistics of the Spermatophyta. Brittonia 42: 197–211.
- Martens, P. 1971. Les Gnétophytes. Pp. 1–295 in Encyclopedia of Plant Anatomy. Vol. 12. Gebrueder Borntraeger, Berlin .
- Martin, P. G., and J. M. Dowd. 1986. A phylogenetic tree for some monocotyledons and gymnosperms derived from protein sequences. Taxon 35: 469–475.
- Martin, P. G., and J. M. Dowd. 1991. Studies of angiosperm phylogenies using protein sequences. Ann. MO. Bot. Gard. 78: 296–337.
- Mathews, S., and M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950.
- Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup, and L. Wolpert. 1985. Developmental constraints and evolution. Q. Rev. Biol. 60: 265–287.
- Mayr, E. 1969. Principles of systematic zoology. McGraw-Hill, New York .
- Mogensen, H. L. 1988. Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Proc. Natl. Acad. Sci. USA 85: 2594–2597.
- Mohr, B. A. R., and E. M. Friis. 2000. Early angiosperms from the Lower Cretaceous Crato formation (Brazil), a preliminary report. Int. J. Plant Sci. 161 (supplement): 155–167.
- Mól, R., E. Matthys-Rochon, and C. Dumas. 1994. The kinetics of cytological events during double fertilization in Zea mays L. Plant J. 5: 197–206.
- Nandi, O. I., M. W. Chase, and P. K. Endress. 1998. A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. Ann. MO. Bot. Gard. 85: 137–212.
- Navashin, S. G. 1898. Resultate einer Revision der Befruchtungsvorgange bei Lilium martagon und Fritillaria tenella. Bull. Acad. Sci. St. Petersburg 9: 377–382.
- Nixon, K. C., W. L. Crepet, D. Stevenson, and E. M. Friis. 1994. A reevaluation of seed plant phylogeny. Ann. MO. Bot. Gard. 81: 484–533.
- Parkinson, C. L., K. L. Adams, and J. D. Palmer. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. 9: 1485–1488.
- Prakash, N., A. L. Lim, and F. B. Sampson. 1992. Anther and ovule development in Tasmania (Winteraceae). Aust. J. Bot. 40: 877–885.
- Qiu, Y.-L., M. W. Chase, D. H. Les, and C. R. Parks. 1993. Molecular phylogenetics of the Magnoliidae: cladistic analysis of nucleotide sequences of the plastid gene rbcL. Ann. MO. Bot. Gard. 80: 587–606.
- Qiu, Y.-L., J. Lee, R. Bernasconi-Quadroni, D. R. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen, and M. W. Chase. 1999. The earliest angiosperms: evidence from mitochondrial, plastid, and nuclear genomes. Nature 402: 404–407.
- Qiu, Y.-L., J. Lee, R. Bernasconi-Quadroni, D. R. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen, and M. W. Chase 2000. Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int. J. Plant Sci. 161: S3–S27.
- Queller, D. C. 1983. Kin selection and conflict in seed maturation. J. Theor. Biol. 100: 153–172.
- Queller, D. C. 1989. Inclusive fitness in a nutshell. Pp. 73–109 in P. H. Harvey and L. Partridge, eds. Oxford surveys in evolutionary biology, Vol. 6. Oxford Univ. Press, Oxford , U.K .
- Raubeson, L. A. 1998. Chloroplast DNA structural similarities shared by conifers and Gnetales: coincidence or common ancestry Am. J. Bot. 85: 153.
- Raubeson, L. A., and R. K. Jansen. 1992. A rare chloroplast-DNA structural mutation is shared by all conifers. Biochem. Syst. Ecol. 20: 17–24.
- Rothwell, G. W., and R. Serbet. 1994. Lignophyte phylogeny and the evolution of spermatophytes–a numerical cladistic analysis. Syst. Bot. 19: 443–482.
- Rudall, P. J., and C. A. Furness. 1997. Systematics of Acorus: ovule and anther. Int. J. Plant Sci. 158: 640–651.
- Russell, S. D. 1982. Fertilization in Plumbago zeylanica: entry and discharge of the pollen tube in the embryo sac. Can. J. Bot. 60: 2219–2230.
- Russell, S. D., and D. D. Cass. 1981. Ultrastructure of fertilization in Plumbago zeylanica. Acta Soc. Bot. Poloniae 50: 185–189.
- Russell, S. D., M. Rougier, and C. Dumas. 1990. Organization of the early postfertilization megagametophyte of Populus deltoides: ultrastructure and implications for male cytoplasmic transmission. Protoplasma 155: 153–165.
- Sæther, O. A. 1983. The canalized evolutionary potential: inconsistencies in phylogenetic reasoning. Syst. Zool. 32: 343–359.
- Samigullin, T. K., W. F. Martin, A. V. Troitsky, and A. S. Antonov. 1999. Molecular data from the chloroplast rpoC1 gene suggest a deep and distinct dichotomy of contemporary spermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms. J. Mol. Evol. 49: 310–315.
- Sanderson, M. J. 1991. In search of homoplastic tendencies: statistical inference of topological patterns in homoplasy. Evolution 45: 351–358.
- Sanderson, M. J., and M. J. Donoghue. 1994. Shifts in diversification rate with the origin of angiosperms. Science 264: 1590–1593.
- Sanderson, M. J., M. F. Wojciechowski, J.-M. Hu, T. Sher Khan, and S. G. Brady. 2000. Error, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants. Mol. Biol. Evol. 17: 782–797.
-
Sargant, E.
1900. Recent work on the results of fertilization in angiosperms.
Ann. Bot.
14: 689–712.
10.1093/oxfordjournals.aob.a088799 Google Scholar
- Schwenk, K. 1995. A utilitarian approach to evolutionary constraint. Zoology 98: 251–262.
-
Sedgewick, P. J.
1924. Life history of Encephalartos.
Bot. Gaz.
77: 300–310.
10.1086/333317 Google Scholar
- Soltis, D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, R. K. Kuzoff, K. A. Kron, M. W. Chase, S. M. Swensen, E. A. Zimmer, S. M. Chaw, L. J. Gillespie, W. J. Kress, and K. J. Sytsma. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. MO. Bot. Gard. 84: 1–49.
- Soltis, D. E., M. E. Mort, M. W. Chase, V. Savolainen, S. B. Hoot, and C. M. Morton. 1998. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst. Biol. 47: 32–42.
- Soltis, P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a research tool for comparative biology. Nature 402: 402–404.
- Stebbins, G. L. 1976. Seeds, seedlings, and the origin of angiosperms. Pp. 300–311 in C. B. Beck, ed. Origin and early evolution of angiosperms. Columbia Univ. Press, New York .
- Stefanovic, S., M. Jager, J. Deutsch, J. Broutin, and M. Masselot. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Am. J. Bot. 85: 688–697.
- Strasburger, E. 1900. Einige bemerkungen zur frage nach der “doppelten befruchtung” bei angiospermen. Bot. Zeit. 58: 293–316.
- Sun, G., D. L. Dilcher, S. Zheng, and Z. Zhou. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282: 1692–1695.
- Takhtajan, A. L. 1969. Flowering plants: origin and dispersal. Smithsonian Institution Press, Washington , D.C .
- Taylor, D. W., and L. J. Hickey. 1990. An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247: 702–704.
- Taylor, D. W., and L. J. Hickey. 1992. Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Syst. Evol. 180: 137–156.
- Thorne, R. F. 1992. Classification and geography of the flowering plants. Bot. Rev. 58: 225–348.
- Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants. Pp. 193–230 in K. J. Niklas, ed. Paleobotany, paleoecology, and evolution. Praeger, New York .
- Tobe, H., T. F. Stuessy, P. H. Raven, and K. Oginuma. 1993. Embryology and karyomorphology of Lactoridaceae. Am. J. Bot. 80: 933–946.
- Tobe, H., T. Jaffre, and P. H. Raven. 2000. Embryology of Amborella (Amborellaceae): Descriptions and polarity of character states. J. Plant Res. 113: 271–280.
- Tucker, S. C., and J. A. Bourland. 1994. Ontogeny of staminate and carpellate flowers of Schisandra glabra (Schisandra). Plant Syst. Evol. 8: 137–158.
-
Tucker, S. C., and
A. W. Douglas. 1996. Floral structure, development, and relationships of paleoherbs: Saruma, Cabomba, Lactoris, and selected Piperales. Pp.
141–175
in
D. W. Taylor and
L. J. Hickey, eds.
Flowering plant origin, evolution, and phylogeny. Chapman and Hall,
New York
.
10.1007/978-0-585-23095-5_7 Google Scholar
- Tuomikoski R. 1967. Notes on some principles of phylogenetic systematics. Ann. Entomol. Fennica 33: 137–147.
- Upchurch, G. R., P. R. Crane, and A. N. Drinnan. 1994. The megaflora from the Quantico locality (Upper Albian), lower Cretaceous Potomac group of Virginia. A. Mus. Nat. Hist. Mem. 4: 1–57.
-
Wake, D. B.
1996. Introduction. Pp.
xvii–xxv
in
M. J. Sanderson and
L. Hufford, eds.
Homoplasy: the recurrence of similarity in evolution. Academic Press,
San Diego
,
CA
.
10.1016/B978-012618030-5/50002-2 Google Scholar
- Walker, J. W., and A. G. Walker. 1984. Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. MO. Bot. Gard. 71: 464–521.
- Walker, J. W., G. J. Brenner, and A. G. Walker. 1983. Winteraceous pollen in the lower Cretaceous of Israel: early evidence of a magnolialean angiosperm family. Science 220: 1273–1275.
- Westoby, M., and B. Rice. 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution 36: 713–724.
- Wettstein, R. R. von. 1907. Handbuch der systematischen Botanik. II. Band. Franz Deuticke, Vienna .
- Williamson, P. S., and E. L. Schneider. 1994. Floral aspects of Barclay a (Nymphaeaceae): pollination, ontogeny and structure. Plant Syst. Evol. 8: 159–173.
- Wilms, H. J. 1981. Pollen tube penetration and fertilization in spinach. Acta Bot. Neerlandica 30: 101–122.
- Xuhan, X., and A. A. M. Van Lammeren. 1997. Structural analysis of embryogenesis and endosperm formation in celery-leafed buttercup (Ranunculus scleratus L.). Acta Bot. Neerlandica 46: 291–301.
- You, R., and W. A. Jensen. 1985. Ultrastructural observations of the mature megagametophyte and the fertilization in wheat (Triticum aestivum). Can. J. Bot. 63: 163–178.
- Yu, H.-S., B.-Q. Huang, and S. D. Russell. 1994. Transmission of male cytoplasm during fertilization in Nicotiana tobacum. Sex. Plant Reprod. 7: 313–323.
- Zimmer, E. A., R. K. Hamby, M. L. Arnold, D. A. Leblanc, and E. C. Theriot. 1989. Ribosomal RNA phylogenies and flowering plant evolution. Pp. 205–214 in B. Fernholm, K. Bremer, and H. Jornvall, eds. The hierarchy of life. Elsevier, Amsterdam .