ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES
Susana Magallon
Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, California 95616
E-mail: [email protected]
Search for more papers by this authorMichael J. Sanderson
Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, California 95616
E-mail: [email protected]
Search for more papers by this authorSusana Magallon
Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, California 95616
E-mail: [email protected]
Search for more papers by this authorMichael J. Sanderson
Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, California 95616
E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract The extraordinary contemporary species richness and ecological predominance of flowering plants (angiosperms) are even more remarkable when considering the relatively recent onset of their evolutionary diversification. We examine the evolutionary diversification of angiosperms and the observed differential distribution of species in angiosperm clades by estimating the rate of diversification for angiosperms as a whole and for a large set of angiosperm clades. We also identify angiosperm clades with a standing diversity that is either much higher or lower than expected, given the estimated background diversification rate. Recognition of angiosperm clades, the phylogenetic relationships among them, and their taxonomic composition are based on an empirical compilation of primary phylogenetic studies. By making an integrative and critical use of the paleobotanical record, we obtain reasonably secure approximations for the age of a large set of angiosperm clades. Diversification was modeled as a stochastic, time-homogeneous birth-and-death process that depends on the diversification rate (r) and the relative extinction rate (∈). A statistical analysis of the birth and death process was then used to obtain 95% confidence intervals for the expected number of species through time in a clade that diversifies at a rate equal to that of angiosperms as a whole. Confidence intervals were obtained for stem group and for crown group ages in the absence of extinction (∈= 0.0) and under a high relative extinction rate (∈= 0.9). The standing diversity of angiosperm clades was then compared to expected species diversity according to the background rate of diversification, and, depending on their placement with respect to the calculated confidence intervals, exceedingly species-rich or exceedingly species-poor clades were identified. The rate of diversification for angiosperms as a whole ranges from 0.077 (∈= 0.9) to 0.089 (∈= 0.0) net speciation events per million years. Ten clades fall above the confidence intervals of expected species diversity, and 13 clades were found to be unexpectedly species poor. The phylogenetic distribution of clades with an exceedingly high number of species suggests that traits that confer high rates of diversification evolved independently in different instances and do not characterize the angiosperms as a whole.
References
- Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants. Ann. Mo. Bot. Gard. 85: 531–553.
- Bailey, N. T. J. 1964. The elements of stochastic processes with applications to the natural sciences. Wiley, New York .
- Baldwin, B., and M. J. Sanderson. 1998. Age and rate of diversification of the Hawaiian silversword alliance. Proc. Natl. Acad. Sci. USA 95: 9402–9406.
- Barraclough, T. G., P. H. Harvey, and S. Nee. 1996. Rate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms). Proc. R. Soc. Lond. B 263: 589–591.
- Basinger, J. F. 1976. Paleorosa similkameenensis gen et sp. nov., permineralized flowers (Rosaceae) from the Eocene of British Columbia. Can. J. Bot. 54: 2293–2305.
-
Brenner, G. J.
1996. Evidence of the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. Pp. 91–115.in
D. W. Taylor and
L. J. Hickey eds.
Flowering plant origin, evolution and phylogeny. Chapman and Hall,
New York
.
10.1007/978-0-585-23095-5_5 Google Scholar
- Bromham, L., D. Penny, A. Rambaut, and M. D. Hendy. 2000. The power of relative rates tests depends on the data. J. Mol. Evol. 50: 296–301.
- Call, V. B., and D. L. Dilcher. 1992. Investigations of angiosperms from the Eocene of southeastern North America: samaras of Fraxinus wilcoxiana berry. Rev. Palaeobot. Palynol. 74: 249–266.
- Call, V. B., and D. L. Dilcher. 1997. The fossil record of Eucommia (Eucommiaceae) in North America. Am. J. Bot. 84: 798–814.
- Cameron, K. M., M. W. Chase, W. M. Whitten, P. J. Kores, D. C. Jarrell, V. A. Albert, T. Yukawa, H. G. Hills, and D. H. Goldman. 1999. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am. J. Bot. 86: 208–224.
- Cevallos-Ferriz, S. R. S., D. M. Erwin, and R. A. Stockey. 1993. Further observations on Paleorosa similkameenensis (Rosaceae) from the Middle Eocene Princeton chert of British Columbia, Canada. Rev. Palaleobot. Palynol. 78: 277–292.
- Chandler, M. E. J. 1964. The Lower Tertiary floras of southern England. IV. A summary and survey of findings in the light of recent botanical observations. British Museum (Natural History), London .
- Collinson, M. E., M. C. Boulter, and P. L. Holmes. 1993. Magnoliophyta (“Angiospermae”). Pp. 809–841 in M. J. J, ed. The fossil record. Vol. 2. Chapman and Hall, London .
- Couper, R. A. 1960. New Zealand Mesozoic and Cainozoic plant microfossils. New Zealand Geol. Surv. Palaeontol. Bull. 32: 1–87.
- Crabtree, D. R. 1987. Angiosperms of the northern Rocky Mountains: Albian to Campanian (Cretaceous) megafossil floras. Ann. Mo. Bot. Gard. 74: 707–747.
- Crane, P. R. 1989. Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Plant Syst. Evol. 162: 165–191.
- Crane, P. R., and P. S. Herendeen. 1996. Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Rev. Palaeobot. Palynol. 90: 319–337.
- Crane, P. R., E. M. Friis, K. R. Pedersen, and A. D. Drinnan. 1993. Early Cretaceous (early to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of eastern North America. Syst. Bot. 18: 328–344.
- Crane, P. R., E. M. Friis, and K. R. Pedersen. 1994. Palaeobotanical evidence on the early radiation of magnoliid angiosperms. Plant Syst. Evol. 8(Suppl.): 51–72.
- Crepet, W. L., and K. C. Nixon. 1998. Fossil Clusiaceae from the Late Cretaceous (Turonian) of the New Jersey and implications regarding the history of bee pollination. Am. J. Bot. 85: 1122–1133.
- Daghlian, C. P. 1981. A review of the fossil record of monocotyledons. Bot. Rev. 47: 517–555.
-
Dahlgren, R. M. T.,
H. T. Clifford, and
P. F. Yeo. 1985. The families of the monocotyledons. Springer,
Berlin
.
10.1007/978-3-642-61663-1 Google Scholar
- Dettmann, M. E., and D. M. Jarzen. 1998. The early history of the Proteaceae in Australia: the pollen record. Aust. Syst. Bot. 11: 401–438.
- Dilcher, D. L., and P. R. Crane. 1984. Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Ann. Mo. Bot. Gard. 71: 351–383.
- Dodd, M. E., J. Silvertown, and M. W. Chase. 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53: 732–744.
- Dorofeev, P. I. 1964. Sarmatskaya Flora g. Apsheronska. Dokl. Akad. Nauk SSSR. 156: 82–84.
- Doyle, J. A. 2000. Paleobotany, relationships, and geographic history of Winteraceae. Ann. Mo. Bot. Gard. 87: 303–316.
- Doyle, J. A., and M. J. Donoghue. 1993. Phylogenies and angiosperm diversification. Paleobiology 19: 141–167.
- Doyle, J. A., and L. J. Hickey. 1976. Pollen and leaves from the Mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. Pp. 139–206.in C. B. B, ed. Origin and early evolution of angiosperms. Columbia Univ. Press, New York .
-
Doyle, J. A., and
C. L. Hotton. 1991. Diversification of early angiosperm pollen in a cladistic context. Pp. 169–195.in
S. H. H, eds.
Pollen and spores: patterns of diversification. Clarendon Press,
Oxford
,
U.K.
10.1093/oso/9780198577461.003.0009 Google Scholar
- Doyle, J. A., C. L. Hotton, and J. V. Ward. 1990a. Early Cretaceous tetrads, zonasulcate pollen, and Winteraceae I.. Taxonomy, morphology, and ultrastructure. Am. J. Bot. 77: 1544–1557.
- Doyle, J. A., C. L. Hotton, and J. V. Ward. 1990b. Early Cretaceous tetrads, zonasulcate pollen, and Winteraceae II.. Cladistic analysis and implications. Am. J. Bot. 77: 1558–1568.
- Drinnan, A. N., P. R. Crane, E. M. Friis, and K. R. Pedersen. 1990. Lauraceous flowers from the Potomac Group (mid-Cretaceous) of eastern North America. Bot. Gaz. 151: 370–384.
- Drinnan, A. N., P. R. Crane, E. M. Friis, and K. R. Pedersen. 1991. Angiosperm flowers and tricolpate pollen of Buxaceous affinity from the Potomac Group (Mid-Cretaceous) of eastern North America. Am. J. Bot. 78: 153–176.
- Duvall, M. R., M. W. Chase, D. E. Soltis, and M. T. Clegg. 1995. A phylogeny of seed plants resulting from analysis of DNA sequence variation among the rbcL loci of 499 species, with particular emphasis on alliances among monocotyledons. Pp. 27–40.in A. G. Stephenson, eds. Experimental and molecular approaches to plant biosystematics. Monographs in Systematic Botany. Missouri Botanical Garden, St Louis , MO .
- Eriksson, O., and B. Bremer. 1992. Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46: 258–266.
- Erwin, D. M., and R. A. Stockey. 1992. Vegetative body of a permineralized monocotyledon from the Middle Eocene Princeton Chert of British Columbia. Cour. Forschungsinst. Senkenberg 147: 309–327.
- Farrell, B., D. E. Dussourd, and C. Mitter. 1991. Escalation of plant defense: Do latex and resin canals spur plant diversification? Am. Nat. 138: 881–900.
- Foote, M., J. P. Hunter, C. M. Janis, and J. J. Sepkoski Jr. 1999. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283: 1310–1314.
- Friis, E. M. 1988. Spirematospermum chandlerae sp nov., an extinct Zingiberaceae from the North American Cretaceous. Tert. Res. 9: 7–12.
- Friis, E. M., P. R. Crane, and K. R. Pedersen. 1988. Reproductive structures of Cretaceous Platanaceae. Biol. Medd. K. Dan. Vidensk. Selsk. 31: 1–56.
- Friis, E. M., H. Eklund, K. R. Pedersen, and P. R. Crane. 1994a. Virginianthus calycanthoides gen et sp. nov.: a calycanthaceous flower from the Potomac Group (Early Cretaceous) of Eastern North America. Int. J. Plant Sci. 155: 772–785.
- Friis, E. M., K. R. Pedersen, and P. R. Crane. 1994b. Angiosperm floral structures from the Early Cretaceous of Portugal. Plant Syst. Evol. 8(Suppl.): 31–50.
- Friis, E. M., K. R. Pedersen, and P. R. Crane. 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Mo. Bot. Gard. 86: 259–296.
- Friis, E. M., K. R. Pedersen, and P. R. Crane. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 356–360.
- Frumin, S., and E. M. Friis. 1999. Magnoliid reproductive organs from the Cenomanian-Turonian of northwestern Kazakstan. Plant Syst. Evol. 216: 265–288.
- Gandolfo, M. A., K. C. Nixon, W. L. Crepet, D. W. Stevenson, and E. M. Friis. 1998a. Oldest known fossils of monocotyledons. Nature 394: 532–533.
- Gandolfo, M. A., K. C. Nixon, and W. L. Crepet. 1998b. A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). Am. J. Bot. 85: 964–974.
- Gandolfo, M. A., K. C. Nixon, and W. L. Crepet. 1998c. Tylerianthus crossmanensis gen et sp. nov. (aff. Hydrangeaceae) from the Upper Cretaceous of New Jersey. Am. J. Bot. 85: 376–386.
- Graham, A. 1987. Tropical American Tertiary floras and palaeoenvironments: Mexico, Costa Rica and Panama. Am. J. Bot. 74: 1519–1531.
-
Gradstein, F. M.,
F. P. Agterberg,
J. G. Ogg,
J. Hardenbol,
P. Van Veen,
J. Thierry, and
Z. Huang. 1995. A Triassic, Jurassic and Cretaceous time scale. Pp. 95–126.in
J. Hardenbol, eds.
Geochronology, time scales and global stratigraphic correlation. Spec. Publ. no. 54. Society for Sedimentary Geology,
Tulsa
,
OK
.
10.2110/pec.95.04.0095 Google Scholar
- Harris, T. E. 1964. The theory of branching processes. Springer, Berlin .
- Heilbuth, J. C. 2000. Lower species richness in dioecious clades. Am. Nat. 156: 221–241.
- Herendeen, P. S., and P. R. Crane. 1992. Early caesalpinioid fruits from the Palaeogene of southern England. Pp. 57–68.in D. L. L, eds. Advances in legume systematics. Pt. 4. The fossil record. Royal Botanic Gardens, Kew , U.K.
- Herendeen, P. S., and P. R. Crane. 1995. The fossil history of the monocotyledons. Pp. 1–21.in C. J. Humphries, eds. Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew , U.K.
- Herendeen, P. S., D. H. Les, and D. L. Dilcher. 1990. Fossil Ceratophyllum (Ceratophyllaceae) from the Tertiary of North America. Am. J. Bot. 77: 7–16.
- Heywood, V. 1993. Flowering plants of the world. Oxford Univ. Press, New York .
-
Hill, R. S.
1991. Leaves of Eucryphia (Eucryphiaceae) from Tertiary sediments in South-eastern Australia.
Aust. Syst. Bot. 4: 481–497.
10.1071/SB9910481 Google Scholar
- Hoot, S. B., S. Magallón, and P. R. Crane. 1999. Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Ann. Mo. Bot. Gard. 86: 1–32.
- Hulbert, R. C. 1993. Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation. Paleobiology 19: 216–234.
- Jacobs, B. F., and C. H. S. Kabuye. 1989. An extinct species of Pollia Thunberg (Commelinaceae) from the Miocene Ngorora Formation, Kenya. Rev. Palaeobot. Palynol. 59: 67–76.
-
Jarzen, D. M.
1978. Some Maastrichtian palynomorphs and their phytogeographical and palaeoecological implications.
Palynology
2: 29–38.
10.1080/01916122.1978.9989163 Google Scholar
- Keller, J. A., P. S. Herendeen, and P. R. Crane. 1996. Fossil flowers and fruits of the Actinidiaceae from the Campanian (Late Cretaceous) of Georgia. Am. J. Bot. 83: 528–541.
- Kendall, D. G. 1948. On the generalized “birth-death” process. Ann. Math. Stat. 19: 1–15.
- Knobloch, E., D. H. Mai. 1986. Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpr. Ustred. Ustavu Geol. 47: 1–219.
- Kubo, T., and Y. Iwasa. 1995. Inferring the rates of branching and extinction from molecular phylogenies. Evolution 49: 694–704.
- Kvaček, Z. 1970. A new Platanus from the Bohemian Tertiary. Palaeontol. Abh. Abt. B 3: 435–439.
- Levin, D., and A. C. Wilson. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc. Natl. Acad. Sci. USA 73: 2086–2090.
- Lidgard, S., and P. R. Crane. 1988. Quantitative analyses of the early angiosperm radiation. Nature 331: 344–346.
-
Linder, H. P.
1987. The evolutionary history of the Poales/Restionales: a hypothesis.
Kew Bull. 42: 297–318.
10.2307/4109686 Google Scholar
- Lupia, R., S. Lidgard, and P. R. Crane. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25: 305–340.
- MacPhail, M. K., A. D. Partridge, and E. M. Truswell. 1999. Fossil pollen records of the problematical primitive angiosperm family Lactoridaceae in Australia. Plant Syst. Evol. 214: 199–210.
- Magallón, S. 1997. Affinity within Hydrangeaceae of a structurally preserved Late Cretaceous flower (Coniacian-Santonian of Georgia, U.S.A.). Am. J. Bot. 84(Suppl.):215.
- Magallón, S. 1999. A neontological and paleantological approvals to the evolution of floral form among basal eudicots. Ph.D. diss. The University of Chicago, Chicago , IL .
- Magallón, S. 2000. Extinct and extant Hamamelidoideae: phylogeny and character evolution. Am. J. Bot. 87(suppl.):141.
- Magallón, S., P. S. Herendeen, and P. K. Endress. 1996. Allonia decandra: floral remains of tribe Hamamelideae (Hamamelidaceae) from Campanian strata of southeastern U.S.A. Plant Syst. Evol. 202: 177–198.
- Magallón, S., P. S. Herendeen, and P. R. Crane. 1997. Quadriplatanus georgianus gen et sp. nov.: staminate and pistillate platanaceous flowers from the Late Cretaceous (Coniacian-Santonian) of Georgia. U.S.A. Int. J. Plant Sci. 158: 373–394.
- Magallón, S., P. R. Crane, and P. S. Herendeen. 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Ann. Mo. Bot. Gard. 86: 297–372.
- Magallón, S., P. S. Herendeen, and P. R. Crane. 2001. Androdecidua endressi gen et sp. nov., from the Late Cretaceous of Georgia, U.S.A.: further floral diversity in Hamamelidoideae (Hamamelidaceae). Int. J. Plant Sci. 162: 963–983.
- Mai, D. H. 1985. Entwicklung der Wasser- und Stumpfpflanzen-Gesellschaften Europas von der Kreide bis ins Quärtar. Flora 176: 449–511.
- Mai, D. H., and H. Walther. 1978. Die Floren der Haselbacher Serie im Weisselster-Becken (Bezirk Leipzig, DDR). Abh. Staat. Mus. Miner. Geol. Dresden 28: 1–200.
- Mai, D. H., and H. Walther. 1985. Die obereozänen Floren des Weisselster-Beckens und seiner Randgebiete. Abh. Staat. Mus. Miner. Geol. Dresden 33: 1–260.
- Manchester, S. R. 1986. Vegetative and reproductive morphology of an extinct plane tree (Platanaceae) from the Eocene of western North America. Bot. Gaz. 147: 200–226.
- Manchester, S. R. 1989. Systematics and fossil history of the Ulmaceae. pp. 221–251.in S. Blackmore, eds. Evolution, systematics, and fossil history of the Hamamelidae. Vol. 2. “Higher” Hamamelidae. The Systematics Association Spec. Vol. no. 40B. Clarendon Press, Oxford , U.K.
- Manchester, S. R. 1994. Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation. Oregon. Palaeontogr. Am. 58: 1–205.
- Manchester, S. R. 1999. Biogeographical relationships of North American Tertiary Floras. Ann. Mo. Bot. Gard. 86: 472–522.
- Manchester, S. R., and M. J. Donoghue. 1995. Winged fruits of Linnaceae (Caprifoliaceae) in the Tertiary of western North America: Diplodipelta gen nov. Int. J. Plant Sci. 156: 709–722.
- Mathews, S., and M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950.
- Médus, J. 1987. Analyse quantitative des palynoflores du Campanien de Sedano, Espagne. Rev. Palaeobot. Palynol. 51: 309–326.
- Moran, P. A. P. 1953. The estimation of the parameters of a birth and death process. J. R. Stat. Soc. B 15: 241–245.
- Muller, J. 1981. Fossil pollen of extant angiosperms. Bot. Rev. 47: 1–142.
- Nee, S., R. M. May, and P. H. Harvey. 1994. The reconstructed evolutionary process. Phil. Trans. R. Soc. Lond. B 344: 305–311.
- Niklas, K., B. H. Tiffney, and A. H. Knoll. 1985. Patterns in vascular land plant diversification: an analysis at the species level. Pp. 97–128.in J. W. W, ed. Phanerozoic diversity patterns. Princeton Univ. Press, Princeton , NJ .
- Nixon, K. C., and W. L. Crepet. 1993. Late Cretaceous fossil flowers of ericalean affinity. Am. J. Bot. 80: 616–623.
- Pacltová, B. 1966. Pollen grains of angiosperms in the Cenomanian Peruc Formation in Bohemia. Palaeobotanist 15: 52–54.
- Pacltová, B. 1981. The evolution and distribution of Normapolles pollen during the Cenophytic. Rev. Palaeobot. Palynol. 35: 175–208.
- Palmer, A. R., and J. Geissman. 1999. Geologic time scale. The Geological Society of America. Available at: www.geosociety.orgcgi-binmallhilight.plgeologicaltimescale timescl.htm0723-15315.
- Pedersen, K. R., E. M. Friis, P. R. Crane, and A. D. Drinnan. 1994. Reproductive structures of an extinct platanoid from the Early Cretaceous (latest Albian) of eastern North America. Rev. Palaeobot. Palynol. 80: 291–303.
- Pigg, K. B., and R. A. Stockey. 1991. Platanaceous plants from the Paleocene of Alberta, Canada. Rev. Palaeobot. Palynol. 70: 125–146.
- Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen, and M. W. Chase. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407.
- Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11: 42–52.
- Renner, S. S. 1999. Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Am. J. Bot. 86: 1301–1315.
- Ricklefs, R., and S. S. Renner. 1994. Species richness within families of flowering plants. Evolution 48: 1619–1636.
- Rohatgi, V. K. 1976. An introduction to probability theory and mathematical statistics. Wiley, New York .
- Sanderson, M. J., and G. Bharathan. 1993. Does cladistic information affect inferences about branching rates? Syst. Biol. 42: 1–17.
- Sanderson, M. J., and M. J. Donoghue. 1994. Shifts in diversification rate with the origin of angiosperms. Science 264: 1590–1593.
- Sanderson, M. J., and M. J. Donoghue. 1996. Reconstructing shifts in diversification rates on phylogenetic trees. Trends Ecol. Evol. 11: 15–20.
- Sanderson, M. J., and M. F. Wojciechowski. 1996. Diversification rates in a temperate legume clade: Are there “so many species” of Astragalus (Fabaceae)? Am. J. Bot. 83: 1488–1502.
- Savolainen, V., M. W. Chase, S. B. Hoot, C. M. Morton, D. E. Soltis, C. Bayer, M. F. Fay, A. Y. Y, S. Sullivan, and Y.-L. Qiu. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 49: 306–362.
- Sepkoski, J. J. 1979. A kinetic model of Phanerozoic taxonomic diversity II.. Early Phanerozoic families and multiple equilibria. Paleobiology 5: 222–251.
- Slowinski, J. B., and C. Guyer. 1989. Testing the stochasticity of patterns of organismal diversity: an improved null model. Am. Nat. 134: 907–921.
- Slowinski, J. B., and C. Guyer. 1993. Testing whether certain traits have caused amplified diversification: an improved method based on a model of random speciation and extinction. Am. Nat. 142: 1019–1024.
-
Smith, A. B.
1994. Systematics and the fossil record. Blackwell,
London
.
10.1002/9781444313918 Google Scholar
- Soltis, D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, R. K. Kuzoff, K. A. Kron, M. W. Chase, S. M. Swensen, E. A. Zimmer, S.-M. Chaw, L. J. Gillespie, W. J. Kress, and K. J. Systma. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Mo. Bot. Gard. 84: 1–49.
- Soltis, P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–407.
- Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon, and J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133: 381–461.
- Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco , CA .
- Strathmann, R. R., and M. Slatkin. 1983. The improbability of animal phyla with few species. Paleobiology 9: 97–106.
- Sun, Z., and D. L. Dilcher. 1988. Fossil Smilax from Eocene sediments in western Tennessee. Amer. J. Bot. 75: 118.
- Takahashi, M., P. R. Crane, and H. Ando. 1999. Esgueiria futabensis sp nov., a new angiosperm flower from the Upper Cretaceous (lower Coniacian) of northeastern Honshu. Japan. Paleontol. Res. 3: 81–87.
- Takhtajan, A. 1997. Diversity and classificatin of flowering plants. Columbia Univ. Press, New York .
- Tiffney, B. H., and S. J. Mazer. 1995. Angiosperm growth habit, dispersal and diversification reconsidered. Evol. Ecol. 9: 93–117.
- Upchurch, G. R., P. R. Crane, and A. N. Drinnan. 1994. The megaflora from the Quantico locality (upper Albian), Lower Cretaceous Potomac Group of Virginia. Mem. Virginia Mus. Nat. Hist. 4: 1–57.
- Voight, E. 1981. Upper Cretaceous bryozoan-seagrass association in the Maastrichtian of the Netherlands. Pp. 281–298.in C. Nielsen, eds. Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg , Denmark .
- Warheit, K. I., J. D. Forman, J. B. Losos, and D. B. Miles. 1999. Morphological diversification and adaptive radiation: a comparison of two diverse lizard clades. Evolution 53: 1226–1234.
- Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Cour. Forschungsinst. Senkenberg 115: 1–213.
- Wilson, M. V. H. 1983. Is there a characteristic rate of radiation for insects Paleobiology 9: 79–85.
- Wolfe, J. A. 1976. Stratigraphic distribution of some pollen types from the Campanian and lower Maestrichtian rocks (Upper Cretaceous) of the middle Atlantic states. Profess. Pap. U.S. Geol. Surv. 977: 1–18.
- Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska Region. Profess. Pap. U.S. Geol. Surv. 997: 1–108.
- Zavada, M. S., and J. M. Benson. 1987. First fossil evidence for the primitive angiosperm family Lactoridaceae. Amer. J. Bot. 74: 1590–1594.