GEOGRAPHIC VARIATION IN FEMALE PREFERENCE FUNCTIONS AND MALE SONGS OF THE FIELD CRICKET TELEOGRYLLUS OCEANICUS
Leigh W. Simmons
Evolutionary Biology Research Group, Department of Zoology, University of Western Australia, Nedlands WA 6907, Australia
Evolutionary Biology Research Group, Department of Zoology, University of Western Australia, Nedlands WA 6907, Australia. E-mail: [email protected]
Search for more papers by this authorMarlene Zuk
Department of Biology, University of California, Riverside, California 92521
Search for more papers by this authorJohn T. Rotenberry
Department of Biology, University of California, Riverside, California 92521
Search for more papers by this authorLeigh W. Simmons
Evolutionary Biology Research Group, Department of Zoology, University of Western Australia, Nedlands WA 6907, Australia
Evolutionary Biology Research Group, Department of Zoology, University of Western Australia, Nedlands WA 6907, Australia. E-mail: [email protected]
Search for more papers by this authorMarlene Zuk
Department of Biology, University of California, Riverside, California 92521
Search for more papers by this authorJohn T. Rotenberry
Department of Biology, University of California, Riverside, California 92521
Search for more papers by this authorAbstract
Abstract.— Male crickets (Teleogryllus oceanicus) produce a complex call consisting of two elements, the long chirp (three to eight sound pulses) followed by a series of short chirps (each with two sound pulses). There is significant geographic variation in the temporal structure of calls, and the long chirp is selected against by acoustically orienting parasitoids in some populations. Here we examine geographic variation in female preference functions for the amount of long chirp. In general, females prefer calls with greater proportions of long chirp, although the strength and nature of selection varied across populations. Variation in preference functions did not match variation in call structure. There was a mismatch between the proportion of long chirp produced by males in a population and the proportion of long chirp preferred by females. The convergent preferences of predators and females are likely to maintain genetic variation in song traits in parasitized populations. The apparent mismatch between preference and trait is discussed in relation to theoretical models of preference evolution.
Literature Cited
- Alexander, R. D. 1962. Evolutionary change in cricket acoustical communication. Evolution. 16: 443–467.
- Andersson, M. 1994. Sexual selection. Princeton Univ. Press, Princeton , NJ .
- Bailey, W. J., and S. Haythornthwaite. 1998. Risks of calling by the field cricket Teleogryllus oceanicus; potential predation by Australian long-eared bats. J. Zool. 244: 505–513.
- Bakker, T. C. M., and A. Pomiankowski. 1995. The genetic basis of female mate preferences. J. Evol. Biol. 8: 129–171.
- Balakrishnan, R., and G. S. Pollack. 1996. Recognition of courtship song in the field cricket, Teleogryllus oceanicus. Anim. Behav. 51: 353–336.
- Basolo, A. L. 1995. Phylogenetic evidence for the role of a preexisting bias in sexual selection. Proc. R. Soc. Lond. B 259: 307–311.
- Basolo, A. L. 1998. Evolutionary change in a receiver bias: a comparison of female preference functions. Proc. R. Soc. Lond. B 265: 2223–2228.
- Bentley, D. R. 1971. Genetic control of an insect neuronal network. Science. 174: 1139–1141.
- Bentley, D. R., and R. R. Hoy. 1972. Genetic control of the neuronal network generating cricket (Teleogryllus gryllus) song patterns. Anim. Behav. 20: 478–492.
- Blows, M. W. 1999. Evolution of the genetic covariance between male and female components of mate recognition: an experimental test. Proc. Roy. Soc. Lond. B 266: 2169–2174.
- Boake, C. R. B., and R. R. Capranica. 1982. Aggressive signal in “courtship” chirps of a gregarious cricket. Science. 218: 580–582.
- Butlin, R. K., and M. G. Ritchie. 1989. Genetic coupling in mate recognition systems: What is the evidence Biol. J. Linn. Soc. 37: 237–246.
- Cade, W. H. 1981. Alternative male strategies: genetic differences in crickets. Science. 212: 563–564.
- Endler, J. A. 1980. Natural selection on color patterns in Poecilia reticulata. Evolution. 34: 76–91.
- Endler, J. A. 1988. Sexual selection and predation risk in guppies. Nature. 332: 593–594.
- Endler, J. A., and A. E. Houde. 1995. Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution. 49: 456–468.
- Fisher, R. A. 1958. The genetical theory of natural selection. Oxford Univ. Press, Oxford , U.K.
-
Foster, S. A., and
J. A. Endler. 1999. Geographic variation in behavior. Oxford Univ. Press,
Oxford
,
U.K.
10.1093/oso/9780195082951.001.0001 Google Scholar
- Gilburn, A. S., and T. H. Day. 1994. Evolution of female choice in seaweed flies: Fisherian and good genes mechanisms operate in different populations. Proc. R. Soc. Lond. B 255: 159–165.
- Gilburn, A. S., S. P. Foster, and T. H. Day. 1993. Genetic correlation between a female mating preference and the preferred male character in seaweed flies (Coelopa frigida). Evolution. 47: 1788–1795.
- Gray, D. A., and W. H. Cade. 1999a. Quantitative genetics of sexual selection in the field cricket, Gryllus integer. Evolution. 53: 848–854.
- Gray, D. A., and W. H. Cade. 1999b. Sex, death and genetic variation: natural and sexual selection on cricket song. Proc. R. Soc. Lond. B 266: 707–709.
- Harrison, R. G., and S. M. Bogdanowicz. 1995. Mitochondrial DNA phylogeny of North American field crickets: perspectives on the evolution of life cycles, songs, and habitat associations. J. Evol. Biol. 8: 209–232.
- Hedrick, A. V. 1988. Female choice and the heritability of attractive male traits: an empirical study. Am. Nat. 132: 267–276.
- Hedrick, A. V., and L. M. Dill. 1993. Mate choice by female crickets is influenced by predation risk. Anim. Behav. 46: 193–196.
- Hennig, R. M., and T. Weber. 1997. Filtering of temporal parameters of the calling song by cricket females of two closely related species: a behavioral analysis. J. Comp. Physiol. A 180: 621–630.
- Hill, G. E. 1994. Geographic variation in male ornamentation and female mate preference in the house finch: a comparative test of models of sexual selection. Behav. Ecol. 5: 64–73.
- Houde, A. E. 1993. Evolution by sexual selection: What can population comparisons tell us Am. Nat. 141: 796–803.
- Houde, A. E. 1994. Effect of artificial selection on male patterns on mating preference of female guppies. Proc. R. Soc. Lond. B 256: 125–130.
- Houde, A. E. 1997. Sex, color, and mate choice in guppies. Princeton Univ. Press, Princeton , NJ .
- Houde, A. E., and J. A. Endler. 1990. Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science. 248: 1405–1408.
- Houde, A. E., and M. A. Hankes. 1997. Evolutionary mismatch of mating preferences and male colour patterns in guppies. Anim. Behav. 53: 343–351.
- Hoy, R. R. 1974. Genetic control of acoustic behavior in crickets. Am. Zool. 14: 1067–1080.
- Hoy, R. R., and R. C. Paul. 1973. Genetic control of song specificity in crickets. Science. 180: 82–83.
- Hoy, R. R., J. Hahn, and R. C. Paul. 1977. Hybrid cricket auditory behavior: evidence for genetic coupling in animal communication. Science. 195: 82–84.
- Hoy, R. R., G. S. Pollack, and A. Moiseff. 1982. Species-recognition in the field cricket, Teleogryllus oceanicus: behavioral and neural mechanisms. Amer. Zool. 22: 597–607.
- Kavanagh, M. W. 1987. The efficiency of sound production in two cricket species, Gryllotalpa australis and Teleogryllus commodus (Orthoptera: Grylloidea). J. Exp. Biol. 130: 107–119.
- Kevan, D. K. M. 1990. Introduced grasshoppers and crickets in Micronesia. Bol. San. Veg. 20: 105–123.
- Kirkpatrick, M. 1985. Evolution of female choice and male parental investment in polygynous species: the demise of the “sexy son. Am. Nat. 125: 788–810.
- Kirkpatrick, M., and M. J. Ryan. 1991. The evolution of mating preferences and the paradox of the lek. Nature. 350: 33–38.
- Lande, R. 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA. 78: 3721–3725.
- Leroy, Y. 1966. Signaux acoustiques, compartement et systématique de quelque espéces de Gryllides (Orthoptes, Ensiferes). Bull. Biol. Fr. Belg. 100: 63–134.
- Mousseau, T. A., and D. J. Howard. 1998. Genetic variation in cricket calling song across a hybrid zone between two sibling species. Evolution. 52: 1104–1110.
-
Otte, D.
1992. Evolution of cricket songs.
J Orthop Res.
1: 25–49.
10.2307/3503559 Google Scholar
- Otte, D., and R. D. Alexander. 1983. The Australian crickets (Orthoptera: Gryllidae). Academy of Natural Sciences of Philadelphia, Philadelphia , PA .
- Pollack, G. S. 1982. Sexual differences in cricket calling song recognition. J. Comp. Physiol. 146: 217–221.
- Pollack, G. S., and R. R. Hoy. 1981. Phonotaxis to individual rythmic components of a complex cricket calling song. J. Comp. Physiol. 144: 367–373.
- Pomiankowski, A. 1988. The evolution of female mate preferences for male genetic quality. Oxford Surv. Evol. Biol. 5: 136–184.
- Prestwich, K. N., and T. J. Walker. 1981. Energetics of singing in crickets: effect of temperature in three trilling species (Orthoptera: Gryllidae). J. Comp. Physiol. 143: 199–212.
- Ritchie, M. G. 1997. The shape of female mating preferences. Proc. Natl. Acad. Sci. USA. 93: 14628–14631.
- Ritchie, M. G. 2000. The inheritance of female preference functions in a mate recognition system. Proc. Roy. Soc. Lond. B 267: 327–332.
-
Rosenthal, R.
1991. Meta-analytic procedures for social research. Sage Publications,
Thousand Oaks
,
CA
.
10.4135/9781412984997 Google Scholar
- Rotenberry, J. T., M. Zuk, L. W. Simmons, and C. Hayes. 1996. Phonotactic parasitoids and cricket song structure: an evaluation of alternative hypotheses. Evol. Ecol. 10: 233–243.
- Ryan, M. J., and A. S. Rand. 1990. The sensory basis of sexual selection for complex calls in the tungara frog, Physalaemus pustulosus (sexual selection for sensory exploitation). Evolution. 44: 305–314.
- Ryan, M. J., and A. S. Rand. 1993a. Sexual selection and signal evolution: the ghost of biases past. Phil. Trans. R. Soc. Lond. B. 340: 187–195.
- Ryan, M. J., and A. S. Rand. 1993b. Species recognition and sexual selection as a unitary problem in animal communication. Evolution. 47: 647–657.
- Ryan, M. J., J. H. Fox, W. Wilczynski, and A. S. Rand. 1990. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature. 343: 66–67.
- Schluter, D. 1988. Estimating the form of natural selection on a quantitative trait. Evolution. 42: 849–861.
- Shaw, K. L. 1996. Polygenic inheritance of a behavioral phenotype: interspecific genetics of song in the Hawaiian cricket genus Laupala. Evolution. 50: 256–266.
- Shaw, K. L., and D. P. Herlihy. 2000. Acoustic preference functions and song variability in the Hawaiian cricket Laupala cerasina. Proc. Roy. Soc. Lond. B 267: 577–584.
- Wagner, W. E. 1996. Convergent song preferences between female field crickets and acoustically orienting parasitoid flies. Behav. Ecol. 7: 279–285.
- Wagner, W. E., Jr., and W. W. Hoback. 1999. Nutritional effects on male calling behaviour in the variable cricket. Anim. Behav. 57: 89–95.
- Wagner, W. E., A.-M. Murray, and W. H. Cade. 1995. Phenotypic variation in the mating preferences of female crickets, Gryllus integer. Anim. Behav. 49: 1269–1281.
- Walker, T. J. 1962. Factors responsible for intraspecific variation in the calling songs of crickets. Evolution. 16: 407–428.
- Webb, K. L., and D. A. Roff. 1992. The quantitative genetics of sound production in Gryllus firmus. Anim. Behav. 44: 823–832.
- Weber, T., and J. Thorson. 1989. Phonotactic behavior of walking crickets. Pp. 310–339 in F. Huber, T. E. Moore, and W. Loher, eds. Cricket behavior and neurobiology. Cornell Univ. Press, Ithaca , NY .
- Zar, J. H. 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs , NJ .
- Zuk, M., L. W. Simmons, and L. Cupp. 1993. Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behav. Ecol. Sociobiol. 33: 339–343.
- Zuk, M., J. T. Rotenberry, and L. W. Simmons. 1998. Calling songs of field crickets (Teleogryllus oceanicus) with and without phonotactic parasitoid infection. Evolution. 52: 166–171.