THE EVOLUTION OF POSTZYGOTIC ISOLATION: ACCUMULATING DOBZHANSKY-MULLER INCOMPATIBILITIES
H. Allen Orr
Department of Biology, University of Rochester, Rochester, New York 14627 E-mail: [email protected]
Search for more papers by this authorMichael Turelli
Section of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616 E-mail: [email protected]
Search for more papers by this authorH. Allen Orr
Department of Biology, University of Rochester, Rochester, New York 14627 E-mail: [email protected]
Search for more papers by this authorMichael Turelli
Section of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616 E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract.— Hybrid sterility and inviability often result from the accumulation of substitutions that, while functional on their normal genetic backgrounds, cause a loss of fitness when brought together in hybrids. Previous theory has shown that such Dobzhansky-Muller incompatibilities should accumulate at least as fast as the square of the number of substitutions separating two species, the so-called snowball effect. Here we explicitly describe the stochastic accumulation of these incompatibilities as a function of time. The accumulation of these incompatibilities involves three levels of stochasticity: (1) the number of substitutions separating two allopatric lineages at a given time; (2) the number of incompatibilities resulting from these substitutions; and (3) the fitness effects of individual incompatibilities. Previous analyses ignored the stochasticity of molecular evolution (level 1) as well as that due to the variable effects of incompatibilities (level 3). Here we approximate the full stochastic process characterizing the accumulation of hybrid incompatibilities between pairs of loci. We derive the distribution of the number of incompatibilities as a function of divergence time between allopatric taxa as well as the distribution of waiting times to speciation by postzygotic isolation. We provide simple approximations for the mean and variance of these waiting times. These results let us estimate, albeit crudely, the probability, p, that two diverged sites from different species will contribute to hybrid sterility or inviability. Our analyses of data from Drosophila and Bombina suggest that p is generally very small, on the order of 10−6 or less.
Literature Cited
- Abramowitz, M., and I. A. Stegun. 1964. Handbook of mathematical functions. National Bureau of Standards, Washington , D.C .
- Adams, M. D., S. E. Celniker, R. A. Holt, et al. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185–2195.
- Barton, N. H. 2001. The role of hybridization in evolution. Mol. Ecol. 10: 551–568.
- Barraclough, T. G., and A. P. Vogler. 2000. Detecting the geographical pattern of speciation from species-level phylogenies. Am. Nat. 155: 419–434.
- Cabot, E. L., A. W. Davis, N. A. Johnson, and C.-I. Wu. 1994. Genetics of reproductive isolation in the Drosophila simulans clade: complex epistasis underlying hybrid male sterility. Genetics 137: 175–189.
- Christie, P., and M. R. Macnair. 1984. Complementary lethal factors in two North American populations of the yellow monkey flower. J. Hered. 75: 510–511.
- Coyne, J. A., and H. A. Orr. 1989. Patterns of speciation in Drosophila. Evolution 43: 362–381.
- Coyne, J. A., and H. A. Orr. 1997. Patterns of speciation revisited. Evolution 51: 295–303.
- Coyne, J. A., and H. A. Orr. 1999. The evolutionary genetics of speciation. Pp. 1–36 in A. E. Magurran and R. M. May, eds. Evolution of biological diversity. Oxford Univ. Press, Oxford , U.K.
- Coyne, J. A., N. H. Barton, and M. Turelli. 2000. Is Wright's shifting balance process important in evolution Evolution 53: 306–317.
- Cutler, D. J. 2000. Estimating divergence times in the presence of an overdispersed molecular clock. Mol. Biol. Evol. 17: 1647–1660.
- Dieckmann, U., and M. Doebeli. 1999. On the origin of species by sympatric speciation. Nature 400: 354–357.
- Dobzhansky, T. 1936. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21: 113–135.
- Gavrilets, S. 1999. A dynamical theory of speciation on holey adaptive landscapes. Am. Nat. 154: 1–22.
- Gillespie, J. H. 1991. The causes of molecular evolution. Oxford Univ. Press, Oxford , U.K.
- Hey, J., and R. M. Kliman. 1993. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804–822.
- Hollingshead, L. 1930. A lethal factor in Crepis effective only in interspecific hybrids. Genetics 15: 114–140.
- Hollocher, H., and C.-I. Wu. 1996. The genetics of reproductive isolation in the Drosophila simulans clade: X versus autosomal effects and male versus female effects. Genetics 143: 1243–1255.
- Hutter, P., J. Roote, and M. Ashburner. 1990. A genetic basis for the inviability of hybrids between sibling species of Drosophila. Genetics 124: 909–920.
- Johnson, N. L., S. Kotz, and A. W. Kemp. 1993. Univariate discrete distributions. 2d ed. Wiley, New York .
- Kirkpatrick, M., and M. R. Servedio. 1999. The reinforcement of mating preferences on an island. Genetics 151: 865–884.
- Knowlton, N., L. A. Weigt, L. A. Solórzano, D. K. Mills, and E. Bermingham. 1993. Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260: 1629–1632.
- Kondrashov, A. S., and F. A. Kondrashov. 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400: 351–354.
- Li, W.-H. 1997. Molecular evolution. Sinauer Associates, Sunderland , MA .
- Liou, L. W., and T. D. Price. 1994. Speciation by reinforcement of premating isolation. Evolution 48: 1451–1459.
-
Mayr, E.
1963. Animal species and evolution. Belknap Press,
Cambridge
,
MA
.
10.1111/j.0022-1112.2004.00433.x Google Scholar
- Muller, H. J. 1942. Isolating mechanisms, evolution, and temperature. Biol. Symp. 6: 71–125.
-
Nei, M.
1987. Molecular evolutionary genetics. Columbia Univ. Press,
New York
.
10.1111/j.1365-294X.2006.02908.x Google Scholar
- Noor, M. 1999. Reinforcement and other consequences of sympatry. Heredity 83: 503–508.
- Orr, H. A. 1995. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139: 1805–1813.
- Orr, H. A. 1997. Haldane's rule. Annu. Rev. Ecol. Syst. 28: 195–218.
- Orr, H. A. 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.
- Orr, H. A., and L. H. Orr. 1996. Waiting for speciation: the effect of population subdivision on the time to speciation. Evolution 50: 1742–1749.
- Orr, H. A., and D. C. Presgraves. 2000. Speciation by postzygotic isolation: forces, genes and molecules. BioEssays 22: 1085–1094.
- Palopoli, M. F., A. W. Davis, and C.-I. Wu. 1996. Discord between the phylogenies inferred from molecular versus functional data: uneven rates of functional evolution or low levels of gene flow Genetics 144: 1321–1328.
- Ross, S. 1994. A first course in probability theory. MacMillan, New York .
- Rundle, H. D., L. Nagel, J. W. Boughman, and D. Schluter. 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287: 306–308.
- Sasa, M. M., P. T. Chippindale, and N. A. Johnson. 1998. Patterns of postzygotic isolation in frogs. Evolution 52: 1811–1820.
- Schemske, D. W., and H. D. Bradshaw. 1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. USA 96: 11910–11915.
- Schliewen, U. K., D. Tautz, and S. Pääbo. 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632.
- Servedio, M. R., and M. Kirkpatrick. 1997. The effects of gene flow on reinforcement. Evolution 51: 1764–1772.
- Szymura, J. M., and N. H. Barton. 1991. The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: comparisons between transects and between loci. Evolution 45: 237–261.
- Thompson, V. 1986. Synthetic lethals: a critical review. Evol. Theory 8: 1–13.
- Tilley, S. G., P. A. Verrell, and S. J. Arnold. 1990. Correspondence between sexual isolation and allozyme differentiation—a test in the salamander Desmognathus ochrophaeus. Proc. Natl. Acad. Sci. USA 87: 2715–2719.
- Ting, C.-T., S.-C. Tsaur, M.-L. Wu, and C.-I. Wu. 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282: 1501–1504.
- True, J. R., B. S. Weir, and C. C. Laurie. 1996. A genome-wide survey of hybrid incompatibility factors by the introgression of marked segments of Drosophila mauritiana chromosomes into Drosophila simulans. Genetics 142: 819–837.
- Turelli, M., and D. J. Begun. 1997. Haldane's rule and X chromosome size in Drosophila. Genetics 147: 1799–1815.
- Turelli, M., and H. A. Orr. 1995. The dominance theory of Haldane's rule. Genetics 140: 389–402.
- Turelli, M., and H. A. Orr. 2000. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154: 1663–1679.
- Wittbrodt, J., D. Adam, B. Malitschek, W. Maueler, F. Raulf, A. Telling, S. M. Robertson, and M. Schartl. 1989. Novel putative receptor tyrsosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature 341: 415–421.
- Wu, C.-I., and M. Palopoli. 1994. Genetics of postmating reproductive isolation in animals. Ann. Rev. Genet. 27: 283–308.
- Wu, C.-I., N. A. Johnson, and M. F. Palopoli. 1996. Haldane's rule and its legacy: why are there so many sterile males Trends Ecol. Evol. 11: 281–284.