Association of gut microbiome with fasting triglycerides, fasting insulin and obesity status in Mexican children
Miguel Vazquez-Moreno
Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Search for more papers by this authorAleyda Perez-Herrera
Consejo Nacional de Ciencia y Tecnología, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Oaxaca, Mexico
Search for more papers by this authorDaniel Locia-Morales
Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Search for more papers by this authorSara Dizzel
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
Search for more papers by this authorDavid Meyre
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
Search for more papers by this authorCorresponding Author
Jennifer C. Stearns
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
Department of Medicine, McMaster University, Hamilton, Ontario, Canada
Correspondence
Miguel Cruz, Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330 C.P. 06725, México City, Mexico.
Email: [email protected]
Jennifer C. Stearns, McMaster University, Health Sciences Center, Room 3N6, 1200 Main Street West, Hamilton, ON L8S 4L8, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Miguel Cruz
Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Correspondence
Miguel Cruz, Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330 C.P. 06725, México City, Mexico.
Email: [email protected]
Jennifer C. Stearns, McMaster University, Health Sciences Center, Room 3N6, 1200 Main Street West, Hamilton, ON L8S 4L8, Canada.
Email: [email protected]
Search for more papers by this authorMiguel Vazquez-Moreno
Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Search for more papers by this authorAleyda Perez-Herrera
Consejo Nacional de Ciencia y Tecnología, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Oaxaca, Mexico
Search for more papers by this authorDaniel Locia-Morales
Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Search for more papers by this authorSara Dizzel
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
Search for more papers by this authorDavid Meyre
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
Search for more papers by this authorCorresponding Author
Jennifer C. Stearns
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
Department of Medicine, McMaster University, Hamilton, Ontario, Canada
Correspondence
Miguel Cruz, Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330 C.P. 06725, México City, Mexico.
Email: [email protected]
Jennifer C. Stearns, McMaster University, Health Sciences Center, Room 3N6, 1200 Main Street West, Hamilton, ON L8S 4L8, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Miguel Cruz
Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Correspondence
Miguel Cruz, Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330 C.P. 06725, México City, Mexico.
Email: [email protected]
Jennifer C. Stearns, McMaster University, Health Sciences Center, Room 3N6, 1200 Main Street West, Hamilton, ON L8S 4L8, Canada.
Email: [email protected]
Search for more papers by this authorFunding information: Instituto Mexicano del Seguro Social, Grant/Award Number: FIS/IMSS/PROT/PRIO/17/062
Summary
Background
The association of gut microbiota with obesity and its cardio-metabolic complications in paediatric populations is still controversial.
Objective
We investigated the association of obesity and cardio-metabolic traits with gut microbiota on 167 and 163 children with normal weight and obesity from Mexico City and Oaxaca, Mexico.
Methods
Anthropometric and biochemical traits were measured. The microbial communities were determined by high-throughput sequencing of bacterial 16S rRNA gene v3-v4 region.
Results
The gut microbial community structure was associated with obesity and fasting plasma insulin (FPI) in Mexico City (PObesity = 0.012, PFPI = 0.0003) and Oaxaca (PObesity = 0.034, PFPI = 0.016), and with triglycerides (TG) in Oaxaca (P = .0002). The Firmicutes/Bacteroidetes ratio was positively associated with TG in Oaxaca (P = .003). Firmicutes and Bacteroidetes phyla were positively and negatively associated with obesity (Mexico City: PFirmicutes = 0.013, PBacteroidetes = 0.009) and TG (Oaxaca: PFirmicutes = 0.002, PBacteroidetes = 0.004). In Oaxaca, Verrucomicrobia was negatively associated with obesity (P = .004). In Mexico City, the bacterial genus Fusicatenibacter, Romboutsia, Ruminococcaceae, Ruminiclostridium, Blautia, Clostridium, Anaerostipes and Intestinibacter were associated with obesity and FPI, while in Oaxaca, Bacteroides, Alistipes and Clostridium were associated with TG.
Conclusion
The gut microbial community structure in children is associated with obesity and FPI in Mexico City, and with obesity, FPI and TG in Oaxaca.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
ijpo12748-sup-0001-Supinfo.pdfPDF document, 786.6 KB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Shamah-Levy T, Cuevas-Nasu L, Gomez-Acosta LM, et al. Effects of SaludArte program in feeding and nutrition components in school children in Mexico City. Salud Publica Mex. 2017; 59(6): 621-629.
- 2Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond). 2011; 35(7): 891-898.
- 3Reddon H, Gueant JL, Meyre D. The importance of gene-environment interactions in human obesity. Clin Sci (Lond). 2016; 130(18): 1571-1597.
- 4Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond). 2016; 130(12): 943-986.
- 5Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500(7464): 541-546.
- 6Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457(7228): 480-484.
- 7Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122): 1022-1023.
- 8Ignacio A, Fernandes MR, Rodrigues VA, et al. Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect. 2016; 22(3): 258.e251-258.e258.
- 9Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010; 18(1): 190-195.
- 10Million M, Maraninchi M, Henry M, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond). 2012; 36(6): 817-825.
- 11Lopez-Contreras BE, Moran-Ramos S, Villarruel-Vazquez R, et al. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. Pediatr Obes. 2018; 13(6): 381-388.
- 12Nirmalkar K, Murugesan S, Pizano-Zarate ML, et al. Gut microbiota and endothelial dysfunction markers in obese Mexican children and adolescents. Nutrients. 2018; 10(12): 1–23.
- 13Cani PD. Microbiota and metabolites in metabolic diseases. Nat Rev Endocrinol. 2019; 15(2): 69-70.
- 14Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014; 588(22): 4223-4233.
- 15Stearns JC, Davidson CJ, McKeon S, et al. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J. 2015; 9(5): 1246-1259.
- 16Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microbiol. 2011; 77(11): 3846-3852.
- 17Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17(1): 10.
- 18Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7): 581-583.
- 19McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013; 8(4):e61217.
- 20Hurlbert SH. The nonconcept of species diversity: a critique and alternative parameters. Ecology. 1971; 52(4): 577-586.
- 21Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973; 54(2): 427-432.
- 22Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006; 62(1): 245-253.
- 23Oksanen J, Blanchet FG, Kindt R, et al. Vegan: community ecology package. R Pack Vers. 2019; 2: 5-6.
- 24Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550.
- 25Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 25(1): 289-300.
- 26Nagpal R, Newman TM, Wang S, Jain S, Lovato JF, Yadav H. Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet. J Diabetes Res. 2018; 2018:3462092.
- 27Denova-Gutierrez E, Castanon S, Talavera JO, et al. Dietary patterns are associated with metabolic syndrome in an urban Mexican population. J Nutr. 2010; 140(10): 1855-1863.
- 28Sohail MU, Elrayess MA, Al Thani AA, Al-Asmakh M, Yassine HM. Profiling the oral microbiome and plasma biochemistry of obese hyperglycemic subjects in Qatar. Microorganisms. 2019; 7(645): 1-14.
- 29Estrada-Velasco BI, Cruz M, Garcia-Mena J, et al. Childhood obesity is associated to the interaction between firmicutes and high energy food consumption. Nutr Hosp. 2014; 31(3): 1074-1081.
- 30Leong C, Haszard JJ, Heath AM, et al. Using compositional principal component analysis to describe children's gut microbiota in relation to diet and body composition. Am J Clin Nutr. 2020; 111(1): 70-78.
- 31Zeng Q, Li D, He Y, et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci Rep. 2019; 9(1):13424.
- 32Benitez-Paez A, Gomez Del Pugar EM, Lopez-Almela I, Moya-Perez A, Codoner-Franch P, Sanz Y. Depletion of Blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening. mSystems. 2020; 5(2): e00857-19.
- 33Crusell MKW, Hansen TH, Nielsen T, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome. 2018; 6(1):89.
- 34Yang Q, Lin SL, Kwok MK, Leung GM, Schooling CM. The roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a Mendelian randomization study. Am J Epidemiol. 2018; 187(9): 1916-1922.
- 35Brahe LK, Le Chatelier E, Prifti E, et al. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes. 2015; 5:e159.
- 36Hu HJ, Park SG, Jang HB, et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One. 2015; 10(7):e0134333.
- 37Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 2019; 19(1): 191.
- 38Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 2014; 5(2):e00889.
- 39Liu D, Wen B, Zhu K, et al. Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity. Appl Microbiol Biotechnol. 2019; 103(13): 5269-5283.
- 40den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015; 64(7): 2398-2408.
- 41Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015; 518(7538): 197-206.
- 42Kaplan JL, Walker WA. Early gut colonization and subsequent obesity risk. Curr Opin Clin Nutr Metab Care. 2012; 15(3): 278-284.
- 43Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015; 117(9): 817-824.
- 44Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016; 31(4): 283-293.
- 45Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019; 51(4): 600-605.
- 46Meyre D, Bouatia-Naji N, Tounian A, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet. 2005; 37(8): 863-867.