Immunohistochemistry of soft tissue tumours – review with emphasis on 10 markers
Corresponding Author
Markku Miettinen
Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
Address for correspondence: M Miettinen MD, Laboratory of Pathology, NCI 9000 Rockville Pike, Building 10, Room 2B50, Bethesda, MD 20892, USA. e-mail: [email protected]Search for more papers by this authorCorresponding Author
Markku Miettinen
Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
Address for correspondence: M Miettinen MD, Laboratory of Pathology, NCI 9000 Rockville Pike, Building 10, Room 2B50, Bethesda, MD 20892, USA. e-mail: [email protected]Search for more papers by this authorAbstract
Immunohistochemistry is an integral component in the proper analysis of soft tissue tumours, and a simple panel of six markers is useful in practical triage: CD34, desmin, epithelial membrane antigen (EMA), keratin cocktail AE1/AE3, S100 protein and alpha smooth muscle actin (SMA). These markers frequently assist in the differential diagnosis of fibroblastic, myoid, nerve sheath and perineurial cell tumours, synovial and epithelioid sarcoma and others. However, they all are multispecific, so that one has to be cognizant of their distribution in normal and neoplastic tissues. Four additional useful markers for specific tumour types are discussed here: CD31 and ERG for vascular endothelial tumours, and KIT and DOG1/Ano-1 for gastrointestinal stromal tumours (GISTs). However, hardly any marker is totally monospecific for any one type of tumour. Furthermore, variably lineage-specific markers do not usually distinguish between benign and malignant proliferations, so that this distinction has to be made on histological grounds. Immunohistochemical evaluation is most useful, efficient and cost-effective when used in the context of careful histological evaluation by an experienced pathologist, aware of all diagnostic entities and their histological spectra. Additional diagnostic steps that must be considered in difficult cases include clinicoradiological correlation and additional sampling of remaining wet tissue, if possible.
References
- 1Van de Rijn M, Rouse RV. CD34 – a review. Appl. Immunohistochem. 1994; 2; 71–80.
- 2Nickoloff BJ. The human progenitor cell antigen (CD34) is localized on endothelial cells, dermal dendritic cells, and perifollicular cells in formalin-fixed normal skin, and on proliferating endothelial cells and stromal spindle-shaped cells in Kaposi's sarcoma. Arch. Dermatol. 1991; 127; 523–529.
- 3Poblet E, Jimenez-Acosta F, Rocamora A. QBEND/10 (anti-CD34 antibody) in external root sheath cells and follicular tumors. J. Cutan. Pathol. 1994; 21; 224–228.
- 4Aiba S, Tabata N, Ishii H, Ootani H, Tagami H. Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumour expressing CD34. Br. J. Dermatol. 1992; 127; 79–84.
- 5van de Rijn M, Lombard CM, Rouse RV. Expression of CD34 by solitary fibrous tumors of the pleura, mediastinum, and lung. Am. J. Surg. Pathol. 1994; 18; 814–820.
- 6Kutzner H. Expression of the human progenitor cell antigen CD34 (HPCA-1) distinguishes dermatofibrosarcoma protuberans from fibrous histiocytoma in formalin-fixed, paraffin-embedded tissue. J. Am. Acad. Dermatol. 1993; 28; 613–617.
- 7Fetsch JF, Laskin WB, Miettinen M. Superficial acral acral fibromyxoma. A clinicopathologic study of 30 cases. Hum. Pathol. 2001; 32; 704–714.
- 8Suster S, Fisher C. Immunoreactivity for the human hematopoietic progenitor cell antigen (CD34) in lipomatous tumors. Am. J. Surg. Pathol. 1997; 21; 195–200.
- 9Traweek ST, Kandalaft PL, Mehta P, Battifora H. The human hematopoietic progenitor cell antigen (CD34) in vascular neoplasia. Am. J. Clin. Pathol. 1991; 96; 25–31.
- 10Miettinen M, Fanburg-Smith JC, Virolainen M, Shmookler BM, Fetsch JF. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Hum. Pathol. 1999; 30; 934–942.
- 11Truong LD, Rangdaeng S, Cagle P, Ro JY, Hawkins H, Font RL. The diagnostic utility of desmin. A study of 584 cases and review of the literature. Am. J. Clin. Pathol. 1990; 93; 305–314.
- 12Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J. Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am. J. Surg. Pathol. 1991; 15; 499–513.
- 13Ordóñez NG. Desmoplastic small round cell tumor: II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am. J. Surg. Pathol. 1998; 22; 1314–1327.
- 14Fletcher CD. Angiomatoid ‘malignant fibrous histiocytoma’: an immunohistochemical study indicative of myoid differentiation. Hum. Pathol. 1991; 22; 563–568.
- 15Fanburg-Smith JC, Miettinen M. Angiomatoid ‘malignant’ fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum. Pathol. 1999; 30; 1336–1343.
- 16Fetsch JF, Laskin WB, Lefkowitz M, Kindblom LG, Meis-Kindblom JM. Aggressive angiomyxoma: a clinicopathologic study of 29 female patients. Cancer 1996; 78; 79–90.
10.1002/(SICI)1097-0142(19960701)78:1<79::AID-CNCR13>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 17Folpe AL, Weiss SW, Fletcher CD, Gown AM. Tenosynovial giant cell tumors: evidence for a desmin-positive dendritic cell subpopulation. Mod. Pathol. 1998; 11; 939–944.
- 18Ordóñez NG. Broad-spectrum immunohistochemical epithelial markers: a review. Hum. Pathol. 2013; 44; 1195–1215.
- 19Theaker JM, Gatter KC, Esiri MM, Fleming KA. Epithelial membrane antigen and cytokeratin expression by meningiomas: an immunohistological study. J. Clin. Pathol. 1986; 39; 435–439.
- 20Perentes E, Nakagawa Y, Ross GW, Stanton C, Rubinstein LJ. Expression of epithelial membrane antigen in perineurial cells and their derivatives. An immunohistochemical study with multiple markers. Acta Neuropathol. 1987; 75; 160–165.
- 21Fetsch JF, Miettinen M. Sclerosing perineurioma: a clinicopathologic study of 19 cases of a distinctive soft tissue lesion with a predilection for the fingers and palms of young adults. Am. J. Surg. Pathol. 1997; 21; 1433–1442.
- 22Hornick JL, Fletcher CD. Soft tissue perineurioma: clinicopathologic analysis of 81 cases including those with atypical histologic features [Review]. Am. J. Surg. Pathol. 2005; 29; 845–858.
- 23Folpe AL, Billings SD, McKenney JK, Walsh SV, Nusrat A, Weiss SW. Expression of claudin-1, a recently described tight junction-associated protein, distinguishes soft tissue perineurioma from potential mimics. Am. J. Surg. Pathol. 2002; 26; 1620–1626.
- 24Hornick JL, Bundock EA, Fletcher CD. Hybrid schwannoma/perineurioma: clinicopathologic analysis of 42 distinctive benign nerve sheath tumors. Am. J. Surg. Pathol. 2009; 33; 1554–1561.
- 25Billings SD, Giblen G, Fanburg-Smith JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): a clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am. J. Surg. Pathol. 2005; 29; 204–210.
- 26Doyle LA, Möller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am. J. Surg. Pathol. 2011; 35; 733–741.
- 27Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31; 11–24.
- 28Cooper D, Schermer A, Sun TT. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications, and limitations. Lab. Invest. 1985; 52; 243–256.
- 29Miettinen M. Keratin immunohistochemistry: update of applications and pitfalls. Pathol. Annu. 1993; 28; 113–143.
- 30Moll R, Löwe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am. J. Pathol. 1992; 140; 427–447.
- 31Miettinen M. Keratin 20: immunohistochemical marker for gastrointestinal, urothelial, and Merkel cell carcinomas. Mod. Pathol. 1995; 8; 384–388.
- 32Miettinen M, Limon J, Niezabitowski A, Lasota J. Patterns of keratin polypeptides in 110 biphasic, monophasic, and poorly differentiated synovial sarcomas. Virchows Arch. 2000; 437; 275–283.
- 33Hornick JL, Fletcher CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am. J. Surg. Pathol. 2003; 27; 1183–1196.
- 34Eusebi V, Carcangiu ML, Dina R, Rosai J. Keratin-positive epithelioid angio-sarcoma of thyroid. A report of four cases. Am. J. Surg. Pathol. 1990; 14; 737–747.
- 35Miettinen M, Fetsch JF. Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: implications in tumor diagnosis. Hum. Pathol. 2000; 31; 1062–1067.
- 36von Koskull H, Virtanen I. Induction of cytokeratin expression in human mesenchymal cells. J. Cell. Physiol. 1987; 133; 321–329.
- 37Knapp AC, Franke WW. Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Cell 1989; 59; 67–79.
- 38Kriho VK, Yang HY, Moskal JR, Skalli O. Keratin expression in astrocytomas: an immunofluorescent and biochemical reassessment. Virchows Arch. 1997; 431; 39–47.
- 39Fanburg-Smith JC, Majidi M, Miettinen M. Keratin expression in schwannoma; a study of 115 retroperitoneal and 22 peripheral schwannomas. Mod. Pathol. 2006; 19; 115–121.
- 40Miettinen M. Immunohistochemistry of soft tissue tumors. In M Miettinen ed. Modern soft tissue pathology. Cambridge/New York: Cambridge University Press, 2010; 52–53.
10.1017/CBO9780511781049 Google Scholar
- 41Nakajima T, Watanabe S, Sato Y, Kameya T, Hirota T, Shimosato Y. An immunoperoxidase study of S-100 protein distribution in normal and neoplastic tissues. Am. J. Surg. Pathol. 1982; 6; 715–727.
- 42Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl. Immunohistochem. Mol. Morphol. 2012; 20; 445–450.
- 43Newman PJ, Berndt MC, Gorski J et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 1990; 47; 1219–1222.
- 44Kuzu I, Bicknell R, Harris AL, Jones M, Gatter KC, Mason DY. Heterogeneity of vascular endothelial cells with relevance to diagnosis of vascular tumours. J. Clin. Pathol. 1992; 45; 143–148.
- 45de Young BR, Wick MR, Fitzgibbon JF, Sirgi KE, Swanson PE. CD31: an immunospecific marker for endothelial differentiation in human neoplasms. Appl. Immunohistochem. 1993; 1; 97–100.
- 46Miettinen M, Lindenmayer AE, Chaubal A. Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens – evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand's factor. Mod. Pathol. 1994; 7; 82–90.
- 47McKenney JK, Weiss SW, Folpe AL. CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am. J. Surg. Pathol. 2001; 25; 1167–1173.
- 48Miettinen M, Wang ZF, Paetau A et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am. J. Surg. Pathol. 2011; 35; 432–441.
- 49McKay KM, Doyle LA, Lazar AJ, Hornick JL. Expression of ERG, an ETS family transcription factor, distinguishes cutaneous angiosarcoma from histological mimics. Histopathology 2012; 61; 989–991.
- 50Agaimy A, Kirsche H, Semrau S, Iro H, Hartmann A. Cytokeratin-positive epithelioid angiosarcoma presenting in the tonsil: a diagnostic challenge. Hum. Pathol. 2012; 43; 1142–1147.
- 51Furusato B, Gao CL, Ravindranath L et al. Mapping of TMPRSS2–ERG fusions in the context of multi-focal prostate cancer. Mod. Pathol. 2008; 21; 67–75.
- 52Yaskiv O, Rubin BP, He H, Falzarano S, Magi-Galluzzi C, Zhou M. ERG protein expression in human tumors detected with a rabbit monoclonal antibody. Am. J. Clin. Pathol. 2012; 138; 803–810.
- 53Miettinen M, Wang Z, Sarlomo-Rikala M, Abdullaev Z, Pack SD, Fetsch JF. ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am. J. Surg. Pathol. 2013; 37; 1580–1585.
- 54Wang WL, Patel NR, Caragea M et al. Expression of ERG, an ETS family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod. Pathol. 2012; 25; 1378–1383.
- 55Verdu M, Trias I, Roman R et al. ERG expression and prostatic adenocarcinoma. Virchows Arch. 2013; 462; 639–644.
- 56Besmer P, Murphy JE, George PC et al. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 1986; 320; 415–421.
- 57Hirota S, Isozaki K, Moriyama Y et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998; 279; 577–580.
- 58Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am. J. Pathol. 1998; 152; 1259–1269.
- 59Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, Miettinen M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod. Pathol. 1998; 11; 728–734.
- 60Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl. Immunohistochem. Mol. Morphol. 2005; 13; 205–220.
- 61Tsuura Y, Hiraki H, Watanabe K et al. Preferential localization of c-kit product in tissue mast cells, basal cells of skin, epithelial cells of breast, small cell lung carcinoma and seminoma/dysgerminoma in human: immunohistochemical study on formalin-fixed, paraffin-embedded tissues. Virchows Arch. 1994; 424; 135–141.
- 62Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C. Expression of c-kit and kit ligand proteins in normal human tissues. J. Histochem. Cytochem. 1994; 42; 1417–1425.
- 63Hornick JL, Fletcher CD. Immunohistochemical staining for KIT (CD117) in soft tissue sarcomas is very limited in distribution. Am. J. Clin. Pathol. 2002; 117; 188–193.
- 64Miettinen M, Sobin LH, Sarlomo-Rikala M. Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Mod. Pathol. 2000; 13; 1134–1142.
- 65West RB, Corless CL, Chen X et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am. J. Pathol. 2004; 165; 107–113.
- 66Espinosa I, Lee CH, Kim MK et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am. J. Surg. Pathol. 2008; 32; 210–218.
- 67Yang YD, Cho H, Koo JY et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008; 455; 1210–1215.
- 68Miettinen M, Wang ZF, Lasota J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am. J. Surg. Pathol. 2009; 33; 1401–1408.
- 69Novelli M, Rossi S, Rodriguez-Justo M et al. DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology 2010; 57; 259–270.
- 70Sah SP, McCluggage WG. DOG1 immunoreactivity in uterine leiomyosarcomas. J. Clin. Pathol. 2013; 66; 40–43.
- 71Hemminger J, Iwenofu OH. Discovered on gastrointestinal stromal tumours 1 (DOG1) expression in non-gastrointestinal stromal tumour (GIST) neoplasms. Histopathology 2012; 61; 170–177.
- 72Akpalo H, Lange C, Zustin J. Discovered on gastrointestinal stromal tumour 1 (DOG1): a useful immunohistochemical marker for diagnosing chondroblastoma. Histopathology 2012; 60; 1099–1106.
- 73Perez-Montiel MD, Plaza JA, Dominguez-Malagon H, Suster S. Differential expression of smooth muscle myosin, SMA, h-caldesmon, and calponin in the diagnosis of myofibroblastic and smooth muscle lesions of skin and soft tissue. Am. J. Dermatopathol. 2006; 28; 105–111.
- 74Watanabe K, Kusakabe T, Hoshi N, Saito A, Suzuki T. h-Caldesmon in leiomyosarcoma and tumors with smooth muscle cell-like differentiation: its specific expression in the smooth muscle cell tumor. Hum. Pathol. 1999; 30; 392–396.
- 75Miettinen M, Sarlomo-Rikala M, Kovatich AJ, Lasota J. Calponin and h-caldesmon in soft tissue tumors: consistent h-caldesmon immunoreactivity in gastrointestinal stromal tumors indicates traits of smooth muscle differentiation. Mod. Pathol. 1999; 12; 756–762.
- 76Folpe AL, Kwiatkowski DJ. Perivascular epithelioid cell neoplasms: pathology and pathogenesis. Hum. Pathol. 2010; 41; 1–15.
- 77Eusebi V, Damiani S, Pasquinelli G, Lorenzini P, Reuter VE, Rosai J. Small cell neuroendocrine carcinoma with skeletal muscle differentiation: report of three cases. Am. J. Surg. Pathol. 2000; 24; 223–230.
- 78Cessna MH, Zhou H, Perkins SL et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am. J. Surg. Pathol. 2001; 25; 1150–1157.
- 79Weiss SW, Nickoloff BJ. CD-34 is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am. J. Surg. Pathol. 1993; 17; 1039–1045.
- 80Chaubal A, Paetau A, Zoltick P, Miettinen M. CD34 immunoreactivity in nervous system tumors. Acta Neuropathol. 1994; 88; 454–458.
- 81Harder A, Wesemann M, Hagel C et al. Hybrid neurofibroma/schwannoma is overrepresented among schwannomatosis and neurofibromatosis patients. Am. J. Surg. Pathol. 2012; 36; 702–709.
- 82Zhou H, Coffin CM, Perkins SL, Tripp SR, Liew M, Viskochil DH. Malignant peripheral nerve sheath tumor: a comparison of grade, immunophenotype, and cell cycle/growth activation marker expression in sporadic and neurofibromatosis 1-related lesions. Am. J. Surg. Pathol. 2003; 27; 1337–1345.
- 83Pelmus M, Guillou L, Hostein I, Sierankowski G, Lussan C, Coindre JM. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT–SSX)-positive cases. Am. J. Surg. Pathol. 2002; 26; 1434–1440.
- 84Terry J, Saito T, Subramanian S et al. TLE1 as a diagnostic immunohisto-chemical marker for synovial sarcoma emerging from gene expression profiling studies. Am. J. Surg. Pathol. 2007; 31; 240–246.
- 85Knösel T, Heretsch S, Altendorf-Hofmann A et al. TLE1 is a robust diagnostic biomarker for synovial sarcomas and correlates with t(X;18): analysis of 319 cases. Eur. J. Cancer 2010; 46; 1170–1176.
- 86Matsuyama A, Hisaoka M, Iwasaki M, Iwashita M, Hisanaga S, Hashimoto H. TLE1 expression in malignant mesothelioma. Virchows Arch. 2010; 457; 577–583.