Effects of climate, topography and grazing disturbance on ecosystem services of temperate grasslands in Inner Mongolia
Corresponding Author
Xiaohang Bai
Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing, China
The Key Laboratory of Rare and Endangered Plants of National Forestry and Grassland Administration, The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming, China
Correspondence
Xiaohang Bai, Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing, 210096, China.
Email: [email protected]
Search for more papers by this authorJieping Chen
Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing, China
Search for more papers by this authorCorresponding Author
Xiaohang Bai
Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing, China
The Key Laboratory of Rare and Endangered Plants of National Forestry and Grassland Administration, The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming, China
Correspondence
Xiaohang Bai, Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing, 210096, China.
Email: [email protected]
Search for more papers by this authorJieping Chen
Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing, China
Search for more papers by this authorAbstract
Understanding the complex relationship between environmental factors and ecosystem services contributes to effective restoration of degraded grasslands and sustainable management of grassland ecosystems. This study establishes 760 grassland sampling plots (1.5 × 1.5 m) with the aim of exploring the effects of environmental factors on functions and services of grassland ecosystems in Inner Mongolia, China. The results of Monte Carlo permutation test indicate that annual precipitation (eigenvalue = 0.431), mean annual temperature (eigenvalue = 0.035) and slope (eigenvalue = 0.098) have greater influences on grassland ecosystem services compared to other environmental factors (e.g., soil properties, grazing and elevation). Annual precipitation promotes plant traits and diversity and then positively influences net primary productivity (NPP) (r2 = 0.62 p < 0.05). In addition, it promotes community resilience (ET) and then positively influences NPP-WS, NPP-WY, NPP-SE (r2 = 0.53 p < 0.05). Mean annual temperature exerts a negative influence on water yield (WY), windbreak sand fixation (WS) and soil erosion (SE) (r2 = 0.41 p < 0.05). Slope has negative influences on plant traits and ecosystem stability, ultimately affecting on NPP-WS and WY-WS (r2 = 0.43 p < 0.05). Disturbance exerts a dual effect, positively enhancing community variability but negatively influencing resilience, while actively modulating the trade-off intensity of WY-SE (r2 = 0.42 p < 0.05). This study reveals the effects of climate, topography and grazing disturbance on grassland ecosystem services, providing data and theoretical support for the protection and management of temperate grassland ecosystems.
Supporting Information
Filename | Description |
---|---|
grs70006-sup-0001-Suppl-table.docxWord 2007 document , 28.5 KB |
Table S1 Parameters investigated to assess plant diversity and ecosystem stability, formulae used in the calculations. Table S2 Interpretation of various factors of net primary productivity, water yield, windbreak sand fixation, soil erosion. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Grassein, F., Hölzel, N., Klaus, V. H., Kleinebecker, T., Morris, E. K., Oelmann, Y., Prati, D., Renner, S. C., Rillig, M. C., Schaefer, M., Schloter, M., Schmitt, B., … Fischer, M. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834–843. https://doi.org/10.1111/ele.12469
- Asah, S. T., Guerry, A. D., Blahna, D. J., & Lawler, J. J. (2014). Perception, acquisition and use of ecosystem services: Human behavior, and ecosystem management and policy implications. Ecosystem Services, 10, 180–186. https://doi.org/10.1016/j.ecoser.2014.08.003
- Bai, X. H., Zhao, W. W., Wang, J., & Ferreira, C. S. S. (2021). Precipitation drives the floristic composition and diversity of temperate grasslands in china. Global Ecology and Conservation, 32, e01933. https://doi.org/10.1016/j.gecco.2021.e01933
- Bai, X. H., Zhao, W. W., Wang, J., & Ferreira, C. S. S. (2022). Reducing plant community variability and improving resilience for sustainable restoration of temperate grassland. Environmental Research, 207, 112149. https://doi.org/10.1016/j.envres.2021.112149
- Bai, Y. F., Zhao, Y. J., Wang, Y., & Zhou, K. L. (2020). Assessment of ecosystem services and ecological regionalization of grasslands supports establishment of ecological security barriers in northern China. Bulletin of the Chinese Academy of Sciences, 35(6), 675–689. https://doi.org/10.16418/j.issn.1000-3045.20200515003 In Chinese.
10.16418/j.issn.1000-3045.20200515003 Google Scholar
- Brown, L. M., & Anand, M. (2022). Plant functional traits as measures of ecosystem service provision. Ecosphere, 13(2), e3930. https://doi.org/10.1002/ecs2.3930
- Donohue, I., Petchey, O. L., Montoya, J. M., Jackson, A. L., McNally, L., Viana, M., Healy, K., Lurgi, M., Oconnor, N. E., & Emmerson, M. C. (2013). On the dimensionality of ecological stability. Ecology Letters, 16(4), 421–429. https://doi.org/10.1111/ele.12086
- Droste, N., D'Amato, D., & Goddard, J. J. (2018). Where communities intermingle, diversity grows—The evolution of topics in ecosystem service research. PLoS ONE, 13(9), e0204749. https://doi.org/10.1371/journal.pone.0204749
- Fang, J. Y., Geng, X. Q., Zhao, X., Shen, H. H., & Hu, H. F. (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63(17), 1731–1739. https://doi.org/10.1360/N972018-00032 (In Chinese).
10.1360/N972018-00032 Google Scholar
- Fang, X. N., Wu, J. G., & He, C. Y. (2021). Assessing human-environment system sustainability based on regional safe and just operating apace: The case of the Inner Mongolia grassland. Environmental Science & Policy, 116, 276–286. https://doi.org/10.1016/j.envsci.2020.12.007
10.1016/j.envsci.2020.12.007 Google Scholar
- Feng, Q., Zhao, W. W., Fu, B. J., Ding, J. Y., & Wang, S. (2017). Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Science of the Total Environment, 607, 1250–1263. https://doi.org/10.1016/j.scitotenv.2017.07.079
- Feng, Q., Zhao, W. W., Hu, X. P., Liu, Y., Daryanto, S., & Cherubini, F. (2020). Trading-off ecosystem services for better ecological restoration: A case study in the loess plateau of China. Journal of Cleaner Production, 257, 120469. https://doi.org/10.1016/j.jclepro.2020.120469
- Fu, Y. J., Shi, X. Y., He, J., Yuan, Y., & Qu, L. L. (2020). Identification and optimization strategy of county ecological security pattern: A case study in the loess plateau, China. Ecological Indicators, 112, 106030. https://doi.org/10.1016/j.ecolind.2019.106030
- Gross, N., Le Bagousse-Pinguet, Y., Liancourt, P., Berdugo, M., Gotelli, N. J., & Maestre, F. T. (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1(5), 132. https://doi.org/10.1038/s41559-017-0132
- Hofmann, G. E., & Todgham, A. E. (2010). Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology, 72, 127–145. https://doi.org/10.1146/annurev-physiol-021909-135900
- Hollan, E. P., Mugford, J., Binny, R. N., & James, A. (2017). How herbivore browsing strategy affects whole-plant photosynthetic capacity. Bulletin of Mathematical Biology, 79(4), 772–787. https://doi.org/10.1007/s11538-017-0253-x
- Holting, L., Jacobs, S., Felipe-Lucia, M. R., Meas, J., Norstrom, A. V., Plieninger, T., & Cord, A. F. (2019). Measuring ecosystem multifunctionality across scales. Environmental Research Letters, 14(12), 124083. https://doi.org/10.1088/1748-9326/ab5ccb
- IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Retrieved 2021-06-06 from: https://z-enodo.org/record/5657041
- Klimešová, J., Martínková, J., Pausas, J. G., de Moraes, M. G., Herben, T., Yu, F. H., Puntieri, J., Vesk, P. A., de Bello, F., Janeček, S., Altman, J., Appezzato-da-Glória, B., Bartušková, A., Crivellaro, A., Doležal, J., Ott, J. P., Paula, S., Schnablová, R., Schweingruber, F. H., & Ottaviani, G. (2019). Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics, 40, 125485. https://doi.org/10.1016/j.ppees.2019.125485
- Lamarque, P., Lavorel, S., Mouchet, M., & Quetier, F. (2014). Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proceedings National Academy of Sciences. United States of America, 111, 13751–13756. https://doi.org/10.1073/pnas.1216051111
- Liao, Z. H., Su, K., Jiang, X. B., Wang, J. P., You, Y. F., Wang, L. Y., Chang, S. H., Wei, C. W., Zhang, Y. M., & Li, C. (2023). Spatiotemporal variation and coupling of grazing intensity and ecosystem based on four quadrant model on the Inner Mongolia. Ecological Indicators, 152, 110379. https://doi.org/10.1016/j.ecolind.2023.110379
- Liu, L. B., Wang, Z., Wang, Y., Zhang, Y. T., Shen, J. S., Qin, D. H., & Li, S. C. (2019). Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: A case study in the Taihang Mountains. Ecological Indicators, 103, 94–104. https://doi.org/10.1016/j.ecolind.2019.03.034
- Liu, M., Dries, L., Heijman, W., Zhu, X. Q., Deng, X. Z., & Huang, J. K. (2019). Land tenure reform and grassland degradation in Inner Mongolia, China. China Economic Review, 55, 181–198. https://doi.org/10.1016/j.chieco.2019.04.006
- Liu, S. N., Lei, Y., Zhao, J. S., Yu, S. X., & Wang, L. (2021). Research on ecosystem services of water conservation and soil retention: A bibliometric analysis. Environmental Science and Pollution Research, 28(3), 2995–3007. https://doi.org/10.1007/s11356-020-10712-4
- Lu, N., Fu, B. J., Jin, T. T., & Chang, R. Y. (2014). Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across loess plateau landscapes. Landscape Ecology, 29(10), 1697–1708. https://doi.org/10.1007/s10980-014-0101-4
- Luo, Q., Zhen, L., Xiao, Y., & Wang, H. Y. (2020). The effects of different types of vegetation restoration on wind erosion prevention: A case study in Yanchi. Environmental Research Letters, 15(11), 115001. https://doi.org/10.1088/1748-9326/abbaff
- Manes, S., Vale, M. M., Malecha, A., & Pires, A. P. F. (2022). Nature-based solutions promote climate change adaptation safeguarding ecosystem services. Ecosystem Services, 55, 101439. https://doi.org/10.1016/j.ecoser.2022.101439
- Manning, P., van der Plas, F., Solivers, S., Allan, E., Maestre, F. T., Mace, G., Whittingham, M. J., & Fischer, M. (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2(3), 427–436. https://doi.org/10.1038/s41559-017-0461-7
- Portela, A. P., Durance, I., Vieira, C., & Honrado, J. (2023). Response-effect trait overlap and correlation in riparian plant communities suggests sensitivity of ecosystem functioning and services to environmental change. Science of the Total Environment, 860, 160549. https://doi.org/10.1016/j.scitotenv.2022.160549
- R Core Team. (2020). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.r-project.org/
- Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA, agricultural handbook number 703. U.S. Government Printing Office.
- Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Muller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., & Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111, 3268–3273. https://doi.org/10.1073/pnas.1222463110
- Schwaige, F., Poschenrieder, W., Biber, P., & Pretzsch, H. (2019). Ecosystem service trade-offs for adaptive forest management. Ecosystem Services, 39, 100993. https://doi.org/10.1016/j.ecoser.2019.100993
10.1016/j.ecoser.2019.100993 Google Scholar
- Schwarz, N., Hoffmann, F., Knapp, S., & Strauch, M. (2020). Synergies or trade-offs? Optimizing a virtual urban region to foster plant species richness, climate regulation, and compactness under varying landscape composition. Frontiers in Environmental Science, 8, 16. https://doi.org/10.3389/fenvs.2020.00016
- Song, M. H., Liu, L. P., Chen, J., & Zhang, X. Z. (2018). Biology, multi-function and optimized management in grassland ecosystem. Ecology and Environmental Sciences, 27(6), 1179–1188. https://doi.org/10.16258/j.cnki.1674-5906.2018.06.025
10.16258/j.cnki.1674-5906.2018.06.025 Google Scholar
- Su, C. H., & Fu, B. J. (2013). Evolution of ecosystem services in the Chinese loess plateau under climatic and land use changes. Global and Planetary Change, 101, 119–128. https://doi.org/10.1016/j.gloplacha.2012.12.014
- Valencia, E., Gross, N., Quero, J. L., Carmona, C. P., Ochoa, V., Gozalo, B., Delgado-Baquerizo, M., Dumack, K., Hamonts, K., Singh, B. K., Bonkowski, M., & Maestre, F. T. (2018). Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology, 24, 5642–5654. https://doi.org/10.1111/gcb.14440
- van der Plas, F. (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94(4), 1220–1245. https://doi.org/10.1111/brv.12499
- Weiskopf, S. R., Myers, B. J. E., Arce-Plata, M. I., Blanchard, J. L., Ferrier, S., Fulton, E. A., Harfoot, M., Isbell, F., Johnson, J. A., Mori, A. S., Weng, E., HarmáCˇková, Z. V., Londoño-Murcia, M. C., Miller, B. W., Pereira, L. M., & Rosa, I. M. D. (2022). A conceptual framework to integrate biodiversity, ecosystem function, and ecosystem service models. Bioscience, 72(11), 1062–1073. https://doi.org/10.1093/biosci/biac074
- Wu, B. Q., Wang, J. B., Qi, S. H., Wang, S. Q., & Li, Y. N. (2019). Review of methods to quantify trade-offs among ecosystem services and future model developments. Journal of Research Ecology, 10(2), 225–233. https://doi.org/10.5814/j.issn.1674-764x.2019.02.013
10.5814/j.issn.1674-764x.2019.02.013 Google Scholar
- Wu, L. Z., Ma, X. F., Dou, X., Zhu, J. T., & Zhao, C. Y. (2021). Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Science of the Total Environment, 796, 149055. https://doi.org/10.1016/j.scitotenv.2021.149055
- Yang, Y. J., & Wang, K. (2019). The effects of different land use patterns on the microclimate and ecosystem services in the agro-pastoral ecotone of northern China. Ecological Indicators, 106, 105522. https://doi.org/10.1016/j.ecolind.2019.105522
- Zhang, B. A., Li, W. H., & Xie, G. D. (2010). Ecosystem services research in China: Progress and perspective. Ecological Economics, 69(7), 1389–1395. https://doi.org/10.1016/j.ecolecon.2010.03.009
- Zhang, H. J., Zhang, Z. C., Liu, K., Huang, C. B., & Dong, G. P. (2023). Integrating land use management with trade-offs between ecosystem services: A framework and application. Ecological Indicators, 149, 110193. https://doi.org/10.1016/j.ecolind.2023.110193
- Zhang, Y. H., He, N. P., Loreau, M., Pan, Q. M., & Han, X. G. (2018). Scale dependence of the diversity-stability relationship in a temperate grassland. Journal of Ecology, 106(3), 1277–1285. https://doi.org/10.1111/1365-2745.12903
- Zheng, H., Pan, Q., Wen, Z., & Yang, Y. Z. (2021). Relationships between plant functional traits and ecosystem services in forests: A review. Acta Ecologica Sinica, 41(20), 7901–7912. https://doi.org/10.5846/stxb202103270805 (In Chinese)
10.5846/stxb202103270805 Google Scholar