A double-clipping method to achieve the fatigue damage equivalence between uniaxial and triaxial random vibrations
Jin Bai
School of Mechano-electronic Engineering, Xidian University, Xi'an, China
Contribution: Methodology, Formal analysis, Writing - original draft, Conceptualization, Supervision, Validation
Search for more papers by this authorCorresponding Author
Yuanying Qiu
School of Mechano-electronic Engineering, Xidian University, Xi'an, China
Correspondence
Yuanying Qiu and Jing Li, School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, China.
Email: [email protected] and
Email: [email protected]
Contribution: Methodology, Formal analysis, Supervision, Writing - review & editing, Validation
Search for more papers by this authorCorresponding Author
Jing Li
School of Mechano-electronic Engineering, Xidian University, Xi'an, China
Correspondence
Yuanying Qiu and Jing Li, School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, China.
Email: [email protected] and
Email: [email protected]
Contribution: Methodology, Formal analysis, Supervision, Validation
Search for more papers by this authorHaidong Wang
Shanghai Spaceflight Precision Machinery Research Institute, Shanghai, China
Contribution: Investigation, Validation
Search for more papers by this authorZhaoxi Wang
Shanghai Spaceflight Precision Machinery Research Institute, Shanghai, China
Contribution: Investigation, Validation
Search for more papers by this authorJin Bai
School of Mechano-electronic Engineering, Xidian University, Xi'an, China
Contribution: Methodology, Formal analysis, Writing - original draft, Conceptualization, Supervision, Validation
Search for more papers by this authorCorresponding Author
Yuanying Qiu
School of Mechano-electronic Engineering, Xidian University, Xi'an, China
Correspondence
Yuanying Qiu and Jing Li, School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, China.
Email: [email protected] and
Email: [email protected]
Contribution: Methodology, Formal analysis, Supervision, Writing - review & editing, Validation
Search for more papers by this authorCorresponding Author
Jing Li
School of Mechano-electronic Engineering, Xidian University, Xi'an, China
Correspondence
Yuanying Qiu and Jing Li, School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, China.
Email: [email protected] and
Email: [email protected]
Contribution: Methodology, Formal analysis, Supervision, Validation
Search for more papers by this authorHaidong Wang
Shanghai Spaceflight Precision Machinery Research Institute, Shanghai, China
Contribution: Investigation, Validation
Search for more papers by this authorZhaoxi Wang
Shanghai Spaceflight Precision Machinery Research Institute, Shanghai, China
Contribution: Investigation, Validation
Search for more papers by this authorFunding information: Technical Basic Research Project of China Aerospace Science and Technology Corporation, Grant/Award Number: JSZL2017203C012; Innovation Fund of Xidian University; Fundamental Research Funds for the Central Universities
Abstract
In this paper, a double-clipping method dealing with both load spectrum and test time is proposed for fatigue damage equivalence between uniaxial and triaxial random vibrations. The load spectrum is clipped appropriately to avoid strength failure because of triaxial over-testing by defining the stress margin. The test time is clipped and three criteria for selecting the key equivalent points are presented to achieve fatigue damage equivalence of important components between uniaxial and triaxial random vibrations. The proposed method is verified through a notched specimen and a printed circuit board (PCB), respectively, showing that the double-clipping method not only avoids over-testing and saves test time but also provides a valuable reference for formulating triaxial random vibration test standards.
CONFLICT OF INTEREST
The authors declared that they have no conflicts of interest to this work.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- 1D'Elia G, Mucchi E. Comparison of single-input single-output and multi-input multi-output control strategies for performing sequential single-axis random vibration control test. J Vib Control. 2020; 11: 107-117.
- 2Luo Z, Chen HH, He XD. Influences of correlations between biaxial random vibrations on the fatigue lives of notched metallic specimens. Int J Fatigue. 2020; 139:105730.
- 3Luo Z, Vantadori S, Ronchei C, Carpinteri A, Chen HH. Vibration fatigue analysis of circumferentially notched specimens under coupled multiaxial random vibration environments. Fatigue Fract Eng Mater Struct. 2021; 44(9): 2412-2428.
- 4Roberts C, Ewins D. Multi-axis vibration testing of an aerodynamically excited structure. J Vib Control. 2018; 24(2): 427-437.
- 5Jacobs LD, Ross M, Tipton G, et al. Experimental execution of 6DOF tests derived from field tests. In: Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics (Vol. 9). Springer; 2017: 125-132.
10.1007/978-3-319-54735-0_14 Google Scholar
- 6D'Elia G, Musella U, Mucchi E, Guillaume P, Peeters B. Analyses of drives power reduction techniques for multi-axis random vibration control tests. Mech Syst Sign Process. 2020; 135: 101-116.
- 7Hobbs GK, Mercado R. Six degree of freedom vibration stress screening. J Environ Sci. 1984; 29(6): 46-53.
- 8Whiteman WE, Berman MS. Fatigue failure results for multi-axial versus uniaxial stress screen vibration testing. Shock Vib. 2002; 9(6): 319-328.
- 9French RM, Handy R, Cooper HL. Comparison of simultaneous and sequential single axis durability testing. Exp Techniques. 2006; 30(5): 32-35.
- 10Habtour E, Connon WS, Pohland MF, Stanton SC, Paulus M, Dasgupta A. Review of response and damage of linear and nonlinear systems under multiaxial vibration. Shock Vib. 2014; 2014(2): 157-178.
- 11Ernst M, Habtour E, Dasgupta A, Pohland M, Robeson M, Paulus M. Comparison of electronic component durability under uniaxial and multiaxial random vibrations. J Electron Packag. 2015; 137(1):011009.
- 12Peterson C. Time-to-failure testing using single- and multi-axis vibration. Sound Vib. 2013; 47(3): 13-16.
- 13He GZ, Chen HH, He XD, Tian JF. A comparative study of multiaxial and uniaxial random vibration fatigue tests. J Vib Eng. 2015; 28(5): 754-761. PMID: (in Chinese).
- 14 United States Department of Defence. Method 514.8: Vibration, United States Military Standard 810H. 2019.
- 15 Mechanical environmental tests: AECTP-400. 2019.
- 16Bai J, Qiu YY, Li J, Wang HD, Wang ZX. An equivalent shape-preserving clipping method for the control spectrum to avoid over-testing of triaxial random vibration. J Sound Vib. 2021; 501(6):116060.
10.1016/j.jsv.2021.116060 Google Scholar
- 17Petruccl G, Zuccarello B. Fatigue life prediction under wide band random loading. Fatigue Fract Eng Mater Struct. 2004; 27(12): 1183-1195.
10.1111/j.1460-2695.2004.00847.x Google Scholar
- 18Dowling NE. Fatigue failure predictions for complicated stress-strain histories. J Mater. 1971; 7(1): 71-87.
- 19Łagoda T, Macha E, Pawliczek R. The influence of the mean stress on fatigue life of 10HNAP steel under random loading. Int J Fatigue. 2001; 23(4): 283-291.
- 20Łagoda T, Macha E, Niesłony A. Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading. Fatigue Fract Eng Mater Struct. 2005; 28(4): 409-420.
- 21Kluger K, Lagoda T. Application of the Dang-Van criterion for life determination under uniaxial random tension-compression with different mean values. Fatigue Fract Eng Mater Struct. 2004; 27(6): 505-512.
- 22Braccesi C, Cianetti F, Lori G, Pioli D. An equivalent uniaxial stress process for fatigue life estimation of mechanical components under multiaxial stress conditions. Int J Fatigue. 2008; 30(8): 1479-1497.
- 23Carpinteri A, Spagnoli A, Vantadori S. A review of multiaxial fatigue criteria for random variable amplitude loads. Fatigue Fract Eng Mater Struct. 2017; 40(7): 1007-1036.
- 24Sonsino CM. Fatigue testing under variable amplitude loading. Int J Fatigue. 2007; 29(6): 1080-1089.
- 25Nieslony A, Macha E. Spectral Method in Multiaxial Random Fatigue. Springer-Verlag; 2007.
- 26Pitoiset X, Rychlik I, Preumont A. Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations. Fatigue Fract Eng Mater Struct. 2001; 24(11): 715-727.
- 27Benasciutti D, Tovo R. On fatigue damage assessment in bimodal random processes. Int J Fatigue. 2007; 29(2): 232-244.
- 28Braccesi C, Cianetti F, Lori G, Pioli D. Fatigue behavior analysis of mechanical components subject to random bimodal stress process: frequency domain approach. Int J Fatigue. 2005; 27(4): 335-345.
- 29Carpinteri A, Spagnoli A, Vantadori S. Reformulation in the frequency domain of a critical plane-based multiaxial fatigue criterion. Int J Fatigue. 2014; 67(9): 55-61.
10.1016/j.ijfatigue.2014.01.008 Google Scholar
- 30Cristofori A, Benasciutti D, Tovo R. A stress invariant based spectral method to estimate fatigue life under multiaxial random loading. Int J Fatigue. 2011; 33(7): 887-899.
- 31Fu TT, Cebon D. Predicting fatigue lives for bi-modal stress spectral densities. Int J Fatigue. 2000; 22(1): 11-21.
10.1016/S0142-1123(99)00113-9 Google Scholar
- 32Pitoiset X, Preumont A. Spectral methods for multiaxial random fatigue analysis of metallic structures. Int J Fatigue. 2000; 22(7): 541-550.
- 33Benasciutti D. Some analytical expressions to measure the accuracy of the“equivalent von Mises stress” in vibration multiaxial fatigue. J Sound Vib. 2014; 333(18): 4326-4340.
- 34Bonte M, Boer AD, Liebregts R. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components. J Sound Vib. 2007; 302(2): 379-386.
10.1016/j.jsv.2006.11.025 Google Scholar
- 35Niesłony A. Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method. J Theor App Mech. 2010; 48(1): 233-254.
- 36Benasciutti D, Tovo R. Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes. Probabilist Eng Mech. 2006; 21(4): 287-299.
- 37Enzveiler Marques JM, Benasciutti D, Carpinteri A, Spagnoli A. An algorithm for fast criticalplane search in CAE durability analysis under multiaxial random loadings—application to the Carpinteri-Spagnoli-Vantadori spectral method. Fatigue Fract Eng Mater Struct. 2020; 43(9): 1978-1993.
10.1111/ffe.13273 Google Scholar
- 38Li Z, Ince A. A unified frequency domain fatigue damage modeling approach for random-on-random spectrum. Int J Fatigue. 2019; 124: 123-137.
- 39Luo Z, Chen H, He X, Zheng R. Two time domain models for fatigue life prediction under multiaxial random vibrations. J Mech Eng Sci. 2019; 203(13): 1989-1996.
- 40He GZ, Chen HH, He XD. Vibration fatigue life prediction method for structures under multiaxial random excitation. J Vib Shock. 2015; 34(7): 59-63. PMID: (in Chinese).
- 41Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct. 1988; 11(3): 149-165.
- 42Findley WN. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng Ind. 1959; 81(4): 301-306.
10.1115/1.4008327 Google Scholar
- 43Brown MW, Miller KJ. A theory for fatigue failure under multiaxial stress-strain conditions. P I Mech Eng. 1973; 187(1): 745-755.
10.1243/PIME_PROC_1973_187_161_02 Google Scholar
- 44Carpinteri A, Spagnoli A, Vantadori S. Multiaxial fatigue assessment using a simplified criticalplane-based criterion. Int J Fatigue. 2011; 33(8): 969-976.
- 45Miner MA. Cumulative damage in fatigue. J Appl Mech. 1945; 12(3): 74-80.
- 46Ge J, Sun Y, Song Z. Fatigue life estimation under multiaxial random loading by means of the equivalent Lemaitre stress and multiaxial S–N curve methods. Int J Fatigue. 2015; 79: 65-74.
- 47Zhao W, Baker MJ. On the probability density function of rainflow stress range for stationary Gaussian processes. Int J Fatigue. 1992; 14(2): 121-135.
- 48Tovo R. Cycle distribution and fatigue damage under broad-band random loading. Int J Fatigue. 2002; 24(11): 1137-1147.
- 49Dirlik T. Application of Computers in Fatigue Analysis. University of Warwick; 1985.
- 50Benasciutti D, Tovo R. Frequency-based analysis of random fatigue loads: models, hypotheses, reality. Materialwiss Werkst. 2018; 49(3): 345-367.
- 51Xia TX, Yao WX. Comparative research on the accumulative damage rules under multiaxial block loading spectrum for 2024-T4 aluminum alloy. Int J Fatigue. 2013; 48: 257-265.
- 52Newland DE. An introduction to random vibrations and spectral analysis. J Vib Acoust. 1975; 108(2): 235-242.
10.1115/1.3269333 Google Scholar
- 53Smith RN, Watson P, Topper TH. A stress-strain parameter for the fatigue of metals. J Mater. 1970; 5(4): 767-778.
- 54Socie DF. Multiaxial fatigue damage models. J Eng Mater-T ASME. 1987; 109(4): 293-298.
- 55Zhao T, Jiang Y. Fatigue of 7075-T651 aluminum alloy. Int J Fatigue. 2008; 30(5): 834-849.
- 56Manson SS. Fatigue: a complex subject-some simple approximations. Exp Mech. 1965; 5(7): 193-226.
10.1007/BF02321056 Google Scholar
- 57Coffin LF. A study of the effects of cyclic thermal stresses on a ductile metal. Trans ASME. 1954; 76: 931-950.
- 58Baumel A, Seeger T. Materials Data for Cyclic Loading, Supplement 1. Elsevier Science Publishers; 1990.
- 59Socie DF, Marquis GB. Multiaxial Fatigue. Society of Automotive Engineers; 2000.
10.4271/R-234 Google Scholar
- 60Endo T, Morrow J. Cyclic stress–strain and fatigue behavior of representative aircraft metals. J Mater. 1969; 4(1): 159-175.
- 61Steinberg DS. Preventing Thermal Cycling and Vibration Failures in Electronic Equipment. John Wiley & Sons; 2001.
- 62 China Department of Defence. Part 16: Vibration test, China National Military Standard 150.16A. 2009.
- 63Wang XG, Gao ZL, Qiu BX, Wang LM, Jiang YY. Multi-axial fatigue of 2024-T4 aluminum alloy. Chin J Mech Eng-En. 2011; 24(2): 195-201.
- 64Braz BD, Bussamra FLD. An enhanced random vibration and fatigue model for printed circuit boards. Lat Am J Solids Stru. 2017; 14(13): 2402-2422.
10.1590/1679-78253163 Google Scholar
- 65Shi CX. China Aeronautical Materials Manual. Standards Press of China; 2002. (in Chinese).