Low-cycle fatigue behavior of rolled WE43-T5 magnesium alloy
Saeede Ghorbanpour
Department of Mechanical Engineering, University of New Hampshire, Durham, New Hampshire, USA
Search for more papers by this authorBrandon A. McWilliams
Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland
Search for more papers by this authorCorresponding Author
Marko Knezevic
Department of Mechanical Engineering, University of New Hampshire, Durham, New Hampshire, USA
Correspondence
Marko Knezevic, Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA.
Email: [email protected]
Search for more papers by this authorSaeede Ghorbanpour
Department of Mechanical Engineering, University of New Hampshire, Durham, New Hampshire, USA
Search for more papers by this authorBrandon A. McWilliams
Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland
Search for more papers by this authorCorresponding Author
Marko Knezevic
Department of Mechanical Engineering, University of New Hampshire, Durham, New Hampshire, USA
Correspondence
Marko Knezevic, Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA.
Email: [email protected]
Search for more papers by this authorAbstract
This paper describes the main results from an investigation into the strength and low-cycle fatigue (LCF) behavior of a rolled plate of WE43 Mg alloy in its T5 condition at room temperature. The alloy was found to exhibit small tension/compression yield asymmetry and small anisotropy being stronger in transverse direction (TD) than in rolling direction (RD) along with some anisotropy in strain hardening. The LCF tests were conducted under strain-controlled conditions with the strain amplitudes ranging from 0.6% to 1.4% without the mean strain component. While the stress amplitudes during the LCF were higher for tests along TD than RD, the LCF life was similar for both directions. As revealed by electron microscopy, the fractured surfaces under tension consisted mainly of microvoid coalescence with some transgranular facets, while those fractured in LCF showed a combination of intergranular fracture and transgranular facets with minor content of microvoid coalescence.
REFERENCES
- 1Agnew SR. Wrought magnesium: a 21st century outlook. JOM. 2004; 56(5): 20-21.
- 2Schumann S, Friedrich HE. Current and future use of magnesium in the automobile industry. Paper presented at: Materials Science Forum2003.
- 3Aragones J, Goundan K, Kolp S, Osborne R, Ouimet L, Pinch W. Development of the 2006 Corvette Z06 structural cast magnesium crossmember. SAE Technical Paper; 2005:0148–7191.
- 4Arrabal R, Matykina E, Viejo F, Skeldon P, Thompson GE. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corros Sci. 2008; 50(6): 1744-1752.
- 5Gusieva K, Davies CHJ, Scully JR, Birbilis N. Corrosion of magnesium alloys: the role of alloying. Int Mater Rev. 2015; 60(3): 169-194.
- 6Robson JD. Critical assessment 9: wrought magnesium alloys. Mater Sci Technol. 2015; 31(3): 257-264.
- 7Avedesian MM, Baker H. ASM Speciality Handbook: Magnesium and Magnesium Alloys. New York: ASM International; 1999: 27.
- 8Li D, Dong J, Zeng X, Lu C, Ding W. Characterization of precipitate phases in a Mg–Dy–Gd–Nd alloy. J Alloys Compd. 2007; 439(1): 254-257.
- 9Nie JF, Muddle BC. Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater. 2000; 48(8): 1691-1703.
- 10Mengucci P, Barucca G, Riontino G, et al. Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater Sci Eng a. 2008; 479(1): 37-44.
- 11Castellani C, Lindtner RA, Hausbrandt P, et al. Bone–implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011; 7(1): 432-440.
- 12Gavras S, Zhu SM, Nie JF, Gibson MA, Easton MA. On the microstructural factors affecting creep resistance of die-cast Mg–La-rare earth (Nd, Y or Gd) alloys. Mater Sci Eng a. 2016; 675: 65-75.
- 13Li Q, Li X, Zhang Q, Chen J. Effect of rare-earth element Sm on the corrosion behavior of Mg-6Al-1.2Y-0.9Nd alloy. Rare Metals. 2010; 29(6): 557-560.
- 14Nie J-F. Precipitation and hardening in magnesium alloys. Metall Mater Trans A. 2012; 43(11): 3891-3939.
- 15King JF. Magnesium: commodity or exotic? Mater Sci Technol. 2007; 23(1): 1-14.
- 16 ASTM B951-11 standard practice for codification of unalloyed magnesium and magnesium-alloys, cast and wrought. In. West Conshohocken, PA, 2011.
- 17Barrett CS. Structure of Metals. New York: McGraw-Hill Book Company, Inc.; 1952.
- 18Wonsiewicz BC, Backofen WA. Plasticity of magnesium crystals. Trans Metall Soc AIME. 1967;239(1422–1431).
- 19Nugmanov D, Knezevic M, Zecevic M, Sitdikov O, Markushev M, Beyerlein IJ. Origin of plastic anisotropy in (ultra)-fine-grained Mg–Zn–Zr alloy processed by isothermal multi-step forging and rolling: experiments and modeling. Mater Sci Eng a. 2018; 713: 81-93.
- 20Reed-Hill R, Robertson W. Additional modes of deformation twinning in magnesium. Acta Metall. 1957; 5(12): 717-727.
- 21Ardeljan M, Knezevic M. Explicit modeling of double twinning in AZ31 using crystal plasticity finite elements for predicting the mechanical fields for twin variant selection and fracture analyses. Acta Mater. 2018; 157: 339-354.
- 22Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR. Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater. 2010; 58(19): 6230-6242.
- 23Ardeljan M, Beyerlein IJ, Knezevic M. Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling. Int J Plast. 2017; 99(Supplement C): 81-101.
- 24Knezevic M, Daymond MR, Beyerlein IJ. Modeling discrete twin lamellae in a microstructural framework. Scr Mater. 2016; 121: 84-88.
- 25Roberts CS. Magnesium and Its Alloys. New York/London: Wiley; 1960.
- 26Flynn PW, Motte J, Dorn JE. On the thermally activated. Mechanism of prismatic slip in magnesium single crystals. Trans Metall Soc AIME. 1961; 221: 1148-1154.
- 27Ardeljan M, Beyerlein IJ, McWilliams BA, Knezevic M. Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy. Int J Plast. 2016; 83: 90-109.
- 28Yoshinaga H, Obara T, Morozumi S. Twinning deformation in magnesium compressed along the c-axis. Materials Science and Engineering. 1973; 12(5–6): 255-264.
- 29Zecevic M, Beyerlein IJ, Knezevic M. Activity of pyramidal I and II <c+a> slip in Mg alloys as revealed by texture development. J Mech Phys Solids. 2018; 111: 290-307.
- 30Barnett MR. Twinning and the ductility of magnesium alloys: part II. "Contraction" twins. Mater Sci Eng a. 2007; 464(1–2): 8-16.
- 31Jahedi M, McWilliams BA, Moy P, Knezevic M. Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: influence on strain hardening and texture evolution. Acta Mater. 2017; 131: 221-232.
- 32Cho K, Sano T, Doherty K, Yen, Chian; Gazonas, George; Montgomery, Jonathan; Moy, Paul; Davis, Bruce; DeLorme, Rick Magnesium technology and manufacturing for ultra lightweight armored ground vehicles. DTIC Document;2009.
- 33Jiang MG, Xu C, Nakata T, Yan H, Chen RS, Kamado S. Rare earth texture and improved ductility in a Mg-Zn-Gd alloy after high-speed extrusion. Mater Sci Eng a. 2016; 667: 233-239.
- 34Hidalgo-Manrique P, Robson JD, Pérez-Prado MT. Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: a quantitative study. Acta Mater. 2017; 124: 456-467.
- 35Bhattacharyya JJ, Wang F, Wu PD, Whittington WR, El Kadiri H, Agnew SR. Demonstration of alloying, thermal activation, and latent hardening effects on quasi-static and dynamic polycrystal plasticity of Mg alloy, WE43-T5, plate. Int J Plast. 2016; 81: 123-151.
- 36Dong S, Wang F, Wan Q, Dong J, Ding W, Jiang Y. Aging effects on cyclic deformation and fatigue of extruded Mg–Gd–Y–Zr alloy. Mater Sci Eng a. 2015; 641: 1-9.
- 37Imandoust A, Barrett CD, Al-Samman T, Inal KA, El Kadiri H. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J Mater Sci. 2017; 52(1): 1-29.
- 38Al-Samman T, Li X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater Sci Eng a. 2011; 528(10): 3809-3822.
- 39Hantzsche K, Bohlen J, Wendt J, Kainer KU, Yi SB, Letzig D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr Mater. 2010; 63(7): 725-730.
- 40Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 2007; 55(6): 2101-2112.
- 41Hadorn JP, Hantzsche K, Yi S, et al. Role of solute in the texture modification during hot deformation of Mg-rare earth alloys. Metall Mater Trans a. 2012; 43(4): 1347-1362.
- 42Sandlöbes S, Pei Z, Friák M, et al. Ductility improvement of Mg alloys by solid solution: ab initio modeling, synthesis and mechanical properties. Acta Materialia. 2014; 70(Supplement C): 92-104.
- 43Stanford N, Barnett MR. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater Sci Eng a. 2008; 496(1): 399-408.
- 44Ye CH, Zheng YF, Wang SQ, Xi TF, Li YD. In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy. Appl Surf Sci. 2012; 258(8): 3420-3427.
- 45Liu Y, Zheng S, Li N, Guo H, Zheng Y, Peng J. Study on the in vitro degradation behavior of pure Mg and WE43 in human bile for 60 days for future usage in biliary. Mater Lett. 2016; 179: 100-103.
- 46Klocke F, Schwade M, Klink A, Kopp A. EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications. Procedia Engineering. 2011; 19: 190-195.
- 47Griebel AJ, Schaffer JE. Fatigue and corrosion fatigue of cold drawn WE43 wires. In: MV Manuel, A Singh, M Alderman, NR Neelameggham, eds. Magnesium Technology 2015. Cham: Springer International Publishing; 2016: 303-307.
- 48Gu XN, Zhou WR, Zheng YF, et al. Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—in simulated body fluid. Acta Biomater. 2010; 6(12): 4605-4613.
- 49Agnew SR, Mulay RP, Polesak Iii FJ, Calhoun CA, Bhattacharyya JJ, Clausen B. In situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: effects of precipitation on individual deformation mechanisms. Acta Mater. 2013; 61(10): 3769-3780.
- 50Lentz M, Klaus M, Wagner M, et al. Effect of age hardening on the deformation behavior of an Mg–Y–Nd alloy: in-situ X-ray diffraction and crystal plasticity modeling. Mater Sci Eng a. 2015; 628(0): 396-409.
- 51Gao L, Chen RS, Han EH. Solid solution strengthening behaviors in binary Mg–Y single phase alloys. J Alloys Compd. 2009; 472(1): 234-240.
- 52Jiang HS. Microstructure and mechanical properties of WE43 magnesium alloy fabricated by direct-chill casting. Mater Sci Eng a. 2017; 684: 158-164.
- 53Wang F, Bhattacharyya JJ, Agnew SR. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys. Mater Sci Eng a. 2016; 666: 114-122.
- 54Zhang MX, Kelly PM. Edge-to-edge matching and its applications. Acta Materialia. 2005; 53(4): 1085-1096.
- 55Kang YH, Wu D, Chen RS, Han EH. Microstructures and mechanical properties of the age hardened Mg–4.2Y–2.5Nd–1Gd–0.6Zr (WE43) microalloyed with Zn. Journal of Magnesium and Alloys. 2014; 2(2): 109-115.
- 56Liu W, Jiang L, Cao L, et al. Fatigue behavior and plane-strain fracture toughness of sand-cast Mg–10Gd–3Y–0.5Zr magnesium alloy. Mater Des. 2014; 59(Supplement C): 466-474.
- 57Asgari H, Odeshi A, Szpunar J. On dynamic deformation behavior of WE43 magnesium alloy sheet under shock loading conditions. Mater Des. 2014; 63: 552-564.
- 58Jahedi M, McWilliams BA, Kellogg FR, Beyerlein IJ, Knezevic M. Rate and temperature dependent deformation behavior of as-cast WE43 magnesium-rare earth alloy manufactured by direct-chill casting. Mater Sci Eng a. 2018; 712: 50-64.
- 59Kondori B, Benzerga AA. On the notch ductility of a magnesium-rare earth alloy. Mater Sci Eng a. 2015; 647: 74-83.
- 60Jahedi M, McWilliams BA, Knezevic M. Deformation and fracture mechanisms in WE43 magnesium-rare earth alloy fabricated by direct-chill casting and rolling. Mater Sci Eng a. 2018; 726: 194-207.
- 61Adams JF, Allison JE, Jones JW. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium. Int J Fatigue. 2016; 93(Part 2): 372-386.
- 62Li H, Lv F, Xiao Z, Liang X, Sang F, Li P. Low-cycle fatigue behavior of a cast Mg–Y–Nd–Zr alloy by T6 heat treatment. Mater Sci Eng A. 2016; 676(Supplement C): 377-384.
- 63Marrow T, Ahmad AB, Khan I, Sim S, Torkamani S. Environment-assisted cracking of cast WE43-T6 magnesium. Mater Sci Eng a. 2004; 387: 419-423.
- 64King A, Ludwig W, Herbig M, et al. Three-dimensional in situ observations of short fatigue crack growth in magnesium. Acta Mater. 2011; 59(17): 6761-6771.
- 65Marrow TJ, Mostafavi M, Hashimoto T, Thompson GE. A quantitative three-dimensional in situ study of a short fatigue crack in a magnesium alloy. Int J Fatigue. 2014; 66: 183-193.
- 66Khan A, Marrow T. In-situ observation of damage mechanisms by digital image correlation during tension and low cycle fatigue of magnesium alloys. Paper presented at: ICF12, Ottawa 2009.
- 67Zhu R, Cai X, Wu Y, Liu L, Ji W, Hua B. Low-cycle fatigue behavior of extruded Mg–10Gd–2Y–0.5Zr alloys. Mater Design. 2014; 53(Supplement C): 992-997.
- 68Xin R, Li L, Zeng K, Song B, Liu Q. Structural examination of aging precipitation in a Mg–Y–Nd alloy at different temperatures. Vol 622011.
- 69Apps PJ, Lorimer GW, Karimzadeh H, King JF. Precipitation processes in magnesium-heavy rare earth alloys during ageing at 300°C. In: Magnesium Alloys and Their Applications. Wiley-VCH Verlag GmbH & Co. KGaA: ▪▪; 2006: 53–58.
10.1002/3527607552.ch9 Google Scholar
- 70Bhattacharyya JJ, Wang F, McQuade PJ, Agnew SR. Deformation and fracture behavior of Mg alloy, WE43, after various aging heat treatments. Mater Sci Eng a. 2017; 705: 79-88.
- 71Xiang C, Gupta N, Coelho P, Cho K. Effect of microstructure on tensile and compressive behavior of WE43 alloy in as cast and heat treated conditions. Mater Sci Eng a. 2018; 710: 74-85.
- 72Smith DH, Bicknell J, Jorgensen L, et al. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Mater Charact. 2016; 113: 1-9.
- 73Jahedi M, Paydar MH, Zheng S, Beyerlein IJ, Knezevic M. Texture evolution and enhanced grain refinement under high-pressure-double-torsion. Mater Sci Eng a. 2014; 611(0): 29-36.
- 74 ASTM E606/E606M-12. Standard Test Method for Strain-Controlled Fatigue Testing. ASTM International: West Conshohocken, PA; 2012.
- 75Gribbin S, Bicknell J, Jorgensen L, Tsukrov I, Knezevic M. Low cycle fatigue behavior of direct metal laser sintered Inconel alloy 718. Int J Fatigue. 2016; 93(Part 1): 156-167.
- 76 ASTM E1012-14. Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application. West Conshohocken, PA: ASTM International; 2014.
- 77Ghorbanpour S, Zecevic M, Kumar A, et al. A crystal plasticity model incorporating the effects of precipitates in superalloys: application to tensile, compressive, and cyclic deformation of Inconel 718. Int J Plast. 2017; 99(Supplement C): 162-185.
- 78Bauschinger J. Über die Veränderung der Elasticitätsgrenze und Festigkeit des Eisen und Stahls durch Strecken und Quetschen, durch Erwarmen und Abkühlen und durch oftmal wiederholte Beanspruchung. Mitteilungen aus dem mechanisch-technischen Laboratorium der k polytechnischen Schule. 1886(7–14):1877–1836.
- 79Zecevic M, Knezevic M. A dislocation density based elasto-plastic self-consistent model for the prediction of cyclic deformation: application to Al6022-T4. Int J Plast. 2015; 72: 200-217.
- 80Zecevic M, Beyerlein IJ, Knezevic M. Coupling elasto-plastic self-consistent crystal plasticity and implicit finite elements: applications to compression, cyclic tension-compression, and bending to large strains. Int J Plast. 2017; 93: 187-211.
- 81Hasegawa T, Yakou T, Karashima S. Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Materials Science and Engineering. 1975; 20: 267-276.
- 82Zecevic M, Korkolis YP, Kuwabara T, Knezevic M. Dual-phase steel sheets under cyclic tension–compression to large strains: experiments and crystal plasticity modeling. J Mech Phys Solids. 2016; 96: 65-87.
- 83Zecevic M, Knezevic M. Latent hardening within the elasto-plastic self-consistent polycrystal homogenization to enable the prediction of anisotropy of AA6022-T4 sheets. Int J Plast. 2018; 105: 141-163.
- 84Park SH, Hong S-G, Bang W, Lee CS. Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy. Mater Sci Eng a. 2010; 527(3): 417-423.
- 85Stephens RI, Fatemi A, Stephens RR, Fuchs HO. Metal Fatigue in Engineering. New York, NY: John Wiley & Sons, Inc.; 2000.
- 86Suresh S. Fatigue of Materials. Cambrige, UK: Cambridge University Press; 1998.
10.1017/CBO9780511806575 Google Scholar
- 87Dowling NE. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue. 4th ed. Upper Saddle River, NJ: Pearson Education, Inc; 2013.
- 88Basquin O. The exponential law of endurance tests. Paper presented at: Proceedings of the American Society for Testing and Materials 1910.
- 89Coffin LF Jr. A study of the effects of cyclic thermal stresses on a ductile metal. Trans ASME. 1954; 76(4): 931-950.
- 90Gillis PP. Manson-Coffin fatigue. Acta Metall. 1966; 14(12): 1673-1676.