Heterogeneity in protocols and outcomes to study the effect of renin-angiotensin system blockers in inflammatory bowel disease: A systematic review
Mariana Ferreira-Duarte
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
LAQV@REQUIMTE, University of Porto, Porto, Portugal
Search for more papers by this authorFernanda S. Tonin
ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
H&TRC-Health and Technology Research Center, Instituto Politécnico de Lisboa, Lisbon, Portugal
Search for more papers by this authorMargarida Duarte-Araújo
LAQV@REQUIMTE, University of Porto, Porto, Portugal
Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
Search for more papers by this authorCorresponding Author
Fernando Fernandez-Llimos
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
UCIBIO i4HB - Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, Porto, Portugal
Correspondence
Fernando Fernandez-Llimos, UCIBIO i4HB - Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
Email: [email protected]
Search for more papers by this authorManuela Morato
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
LAQV@REQUIMTE, University of Porto, Porto, Portugal
Search for more papers by this authorMariana Ferreira-Duarte
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
LAQV@REQUIMTE, University of Porto, Porto, Portugal
Search for more papers by this authorFernanda S. Tonin
ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
H&TRC-Health and Technology Research Center, Instituto Politécnico de Lisboa, Lisbon, Portugal
Search for more papers by this authorMargarida Duarte-Araújo
LAQV@REQUIMTE, University of Porto, Porto, Portugal
Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
Search for more papers by this authorCorresponding Author
Fernando Fernandez-Llimos
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
UCIBIO i4HB - Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, Porto, Portugal
Correspondence
Fernando Fernandez-Llimos, UCIBIO i4HB - Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
Email: [email protected]
Search for more papers by this authorManuela Morato
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
LAQV@REQUIMTE, University of Porto, Porto, Portugal
Search for more papers by this authorFunding information: This work was supported by Fundação para a Ciência e Tecnologia (FCT) (Partnership Agreement UIDB-50006/2020 and SFRH/D/145654/2019 to M.F.D.).
Abstract
Background
The renin-angiotensin system (RAS) has been associated with inflammatory bowel disease (IBD), supporting translational relevance of RAS blockers. Comparability of study design/outcomes is fundamental for data analysis/discussion.
Objectives
We aimed at evaluating the heterogeneity among protocols and outcomes to study the effect of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in IBD.
Methods
This study was performed and reported in accordance with the Cochrane recommendations and PRISMA (PROSPERO-CRD42022323853). Systematic searches were performed in PubMed, Scopus and Web of Science. Studies that met the inclusion criteria were selected. Quality assessment of the studies was done with the SYRCLES's risk of bias tools for animal studies.
Results
Thirty-five pre-clinical studies and six clinical studies were included. Chemical induction of colitis was the most used model, but variable doses of the induction agent were reported. All studies reported at least a disease activity index, a macroscopic score, or a histologic assessment, but these scores were methodologically heterogeneous and reported for different characteristics. Great heterogeneity was also found in drug interventions. Inflammatory markers assessed as outcomes were different across studies.
Conclusion
Lack of standardization of protocols and outcomes among studies threatens the evidence on how RAS blockers influence IBD outcomes.
CONFLICT OF INTEREST STATEMENT
The authors have no conflict of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data underlying this article are available in the article and in its online supplementary material.
Supporting Information
Filename | Description |
---|---|
fcp12935-sup-0001-S1 - Search strategies.docxWord 2007 document , 13.4 KB |
Data S1. Supporting Information |
fcp12935-sup-0002-S2-Detailed eligibility criteria assessment.xlsxExcel 2007 spreadsheet , 81.1 KB |
Data S2. Supporting Information |
fcp12935-sup-0003-S3-Detailed data extraction.xlsxExcel 2007 spreadsheet , 50.9 KB |
Data S3. Supporting Information |
fcp12935-sup-0004-S4-SYRCLEs items for assessing risk of bias.xlsxExcel 2007 spreadsheet , 13.4 KB |
Data S4. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008; 264(3): 224-236. doi:10.1111/j.1365-2796.2008.01981.x
- 2Ewert S, Spak E, Olbers T, Johnsson E, Edebo A, Fandriks L. Angiotensin II induced contraction of rat and human small intestinal wall musculature in vitro. Acta Physiol (Oxf). 2006; 188(1): 33-40. doi:10.1111/j.1748-1716.2006.01600.x
- 3Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006; 86(3): 747-803. doi:10.1152/physrev.00036.2005
- 4Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther. 2012; 35(4): 414-428. doi:10.1111/j.1365-2036.2011.04971.x
- 5Fandriks L. The renin-angiotensin system and the gastrointestinal mucosa. Acta Physiol (Oxf). 2011; 201(1): 157-167. doi:10.1111/j.1748-1716.2010.02165.x
- 6Ferreira-Duarte M, Rodrigues-Pinto T, Sousa T, et al. Interaction between the renin-angiotensin system and enteric neurotransmission contributes to colonic dysmotility in the TNBS-induced model of colitis. Int J Mol Sci. 2021; 22(9):4836. doi:10.3390/ijms22094836
- 7Capettini LS, Montecucco F, Mach F, Stergiopulos N, Santos RA, da Silva RF. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm des. 2012; 18(7): 963-970. doi:10.2174/138161212799436593
- 8Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010; 28(1): 573-621. doi:10.1146/annurev-immunol-030409-101225
- 9Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology. 2021; 161(4): 1118-1132. doi:10.1053/j.gastro.2021.07.042
- 10Argollo M, Gilardi D, Peyrin-Biroulet C, Chabot JF, Peyrin-Biroulet L, Danese S. Comorbidities in inflammatory bowel disease: a call for action. Lancet Gastroenterol Hepatol. 2019; 4(8): 643-654. doi:10.1016/S2468-1253(19)30173-6
- 11Yarur AJ, Deshpande AR, Pechman DM, Tamariz L, Abreu MT, Sussman DA. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am J Gastroenterol. 2011; 106(4): 741-747. doi:10.1038/ajg.2011.63
- 12Nunez P, Garcia Mateo S, Quera R, Gomollon F. Inflammatory bowel disease and the risk of cardiovascular diseases. Gastroenterol Hepatol. 2021; 44(3): 236-242. doi:10.1016/j.gastrohep.2020.09.002
- 13Sinh P, Cross R. Cardiovascular risk assessment and impact of medications on cardiovascular disease in inflammatory bowel disease. Inflamm Bowel Dis. 2021; 27(7): 1107-1115. doi:10.1093/ibd/izaa258
- 14Katada K, Yoshida N, Suzuki T, et al. Dextran sulfate sodium-induced acute colonic inflammation in angiotensin II type 1a receptor deficient mice. Inflamm Res. 2008; 57(2): 84-91. doi:10.1007/s00011-007-7098-y
- 15Garg M, Burrell LM, Velkoska E, et al. Upregulation of circulating components of the alternative renin-angiotensin system in inflammatory bowel disease: a pilot study. J Renin Angiotensin Aldosterone Syst. 2015; 16(3): 559-569. doi:10.1177/1470320314521086
- 16Zizzo MG, Auteri M, Amato A, et al. Angiotensin II type II receptors and colonic dysmotility in 2,4-dinitrofluorobenzenesulfonic acid-induced colitis in rats. Neurogastroenterol Motil. 2017; 29(6):e13019. doi:10.1111/nmo.13019
- 17Kiesler P, Fuss IJ, Strober W. Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 2015; 1(2): 154-170. doi:10.1016/j.jcmgh.2015.01.006
- 18Talari K, Goyal M. Retrospective studies—utility and caveats. J R Coll Physicians Edinb. 2020; 50(4): 398-402. doi:10.4997/jrcpe.2020.409
- 19Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71. doi:10.1136/bmj.n71
- 20 JPT Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M.J. Page, V.A. Welch (editors). Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (updated 2022) 2022.
- 21Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14(1): 43. doi:10.1186/1471-2288-14-43
- 22Koga H, Yang H, Adler J, Zimmermann EM, Teitelbaum DH. Transanal delivery of angiotensin converting enzyme inhibitor prevents colonic fibrosis in a mouse colitis model: development of a unique mode of treatment. Surgery. 2008; 144(2): 259-268. doi:10.1016/j.surg.2008.03.043
- 23Mizushima T, Sasaki M, Ando T, et al. Blockage of angiotensin II type 1 receptor regulates TNF-alpha-induced MAdCAM-1 expression via inhibition of NF-kappaB translocation to the nucleus and ameliorates colitis. Am J Physiol Gastrointest Liver Physiol. 2010; 298(2): G255-G266. doi:10.1152/ajpgi.00264.2009
- 24Okawada M, Koga H, Larsen SD, et al. Use of enterally delivered angiotensin II type Ia receptor antagonists to reduce the severity of colitis. Dig Dis Sci. 2011; 56(9): 2553-2565. doi:10.1007/s10620-011-1651-9
- 25Spencer AU, Yang H, Haxhija EQ, Wildhaber BE, Greenson JK, Teitelbaum DH. Reduced severity of a mouse colitis model with angiotensin converting enzyme inhibition. Dig Dis Sci. 2007; 52(4): 1060-1070. doi:10.1007/s10620-006-9124-2
- 26Sueyoshi R, Ignatoski KM, Daignault S, Okawada M, Teitelbaum DH. Angiotensin converting enzyme-inhibitor reduces colitis severity in an IL-10 knockout model. Dig Dis Sci. 2013; 58(11): 3165-3177. doi:10.1007/s10620-013-2825-4
- 27Wada T, Sasaki M, Oshima T, et al. Angiotensin II type 1 receptor blocker, candesartan attenuated colonic inflammation in dextran-sulfate induced colitis via inhibition of madcam-1 expression (abstracts of the AGA Institute). Gastroenterology. 2006; 130(4):A-344-A-345.
- 28Wengrower D, Zanninelli G, Pappo O, et al. Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis. 2004; 10(5): 536-545. doi:10.1097/00054725-200409000-00007
- 29Sueyoshi RIK, Ignatoski K, Okawada M, Teitelbaum DH. Blockade of angiotensin converting enzyme-inhibitor (ACE-I) prevents in immunologically relevant colitis model. J am Coll Surg. 2012; 215(3): S11-S12. doi:10.1016/j.jamcollsurg.2012.06.055
- 30Arab HH, Al-Shorbagy MY, Abdallah DM, Nassar NN. Telmisartan attenuates colon inflammation, oxidative perturbations and apoptosis in a rat model of experimental inflammatory bowel disease. PLoS ONE. 2014; 9(5):e97193. doi:10.1371/journal.pone.0097193
- 31Arumugam S, Sreedhar R, Thandavarayan RA, et al. Telmisartan treatment targets inflammatory cytokines to suppress the pathogenesis of acute colitis induced by dextran sulphate sodium. Cytokine. 2015; 74(2): 305-312. doi:10.1016/j.cyto.2015.03.017
- 32Fatima DSA. Therapeutic effect of olmesartan medoxomile alone and in combination with sulfasalazine in experimentally ulcerative colitis model in rats. Int J Toxicol Pharmacol Res. 2016; 8(2): 97-106.
- 33Lee C, Chun J, Im JP, Jung HC, Kim JS. Tu1636 immunomodulatory effect of enalapril on peritoneal macrophage and chronic colitis in interleukin-10-deficient mice. Gastroenterology. 2013; 144(5): S-811. doi:10.1016/S0016-5085(13)63005-X
- 34Liu TJ, Shi YY, Wang EB, Zhu T, Zhao Q. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease. Mol Med Rep. 2016; 13(2): 1156-1162. doi:10.3892/mmr.2015.4686
- 35Okawada M, Wilson MW, Larsen SD, Lipka E, Hillfinger J, Teitelbaum DH. Blockade of the renin-angiotensin system prevents acute and immunologically relevant colitis in murine models. Pediatr Surg Int. 2016; 32(12): 1103-1114. doi:10.1007/s00383-016-3965-3
- 36Salmenkari HHM, Holappa M, Forsgard RA, Korpela R, Vapaatalo H. Orally administered angiotensin-converting enzyme-inhibitors captopril and isoleucine-proline-proline have distinct effects on local renin-angiotensin system and corticosterone synthesis in dextran sulfate sodium-induced colitis in mice. J Physiol Pharmacol. 2017; 68(3): 355-362.
- 37Shi Y, Liu T, He L, et al. Activation of the renin-angiotensin system promotes colitis development. Sci Rep. 2016; 6(1):27552. doi:10.1038/srep27552
- 38Asgharzadeh F, Yaghoubi A, Nazari SE, et al. The beneficial effect of combination therapy with sulfasalazine and valsartan in the treatment of ulcerative colitis. EXCLI j. 2021; 20: 236-247. doi:10.17179/excli2021-3370
- 39Hachiya K, Masuya M, Kuroda N, et al. Irbesartan, an angiotensin II type 1 receptor blocker, inhibits colitis-associated tumourigenesis by blocking the MCP-1/CCR2 pathway. Sci Rep. 2021; 11(1):19943. doi:10.1038/s41598-021-99412-8
- 40Salmenkari H, Pasanen L, Linden J, Korpela R, Vapaatalo H. Beneficial anti-inflammatory effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker in the treatment of dextran sulfate sodium-induced colitis in mice. J Physiol Pharmacol. 2018; 69(4):07. doi:10.26402/jpp.2018.4.07
- 41Santiago OI, Rivera E, Ferder L, Appleyard C, B. An angiotensin II receptor antagonist alters the expression of inflammatory cytokines in acute experimental colitis. FASEB j. 2007; 21(6): A1322-A1322. doi:10.1096/fasebj.21.6.A1322-a
- 42Zhang L, Dai X, Zhao M, Sha L. Su1824—effect of zofenopril on acetic acid-induced ulcerative colitis. Gastroenterology. 2019; 156(6): S-625. doi:10.1016/S0016-5085(19)38461-6
- 43Lee C, Chun J, Hwang SW, Kang SJ, Im JP, Kim JS. Enalapril inhibits nuclear factor-kappaB signaling in intestinal epithelial cells and peritoneal macrophages and attenuates experimental colitis in mice. Life Sci. 2014; 95(1): 29-39. doi:10.1016/j.lfs.2013.11.005
- 44Wengrower DZG, Zanninelli G, Latella G, et al. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012; 26(1): 33-39. doi:10.1155/2012/628268
- 45Guerra GC, Araujo AA, Lira GA, et al. Telmisartan decreases inflammation by modulating TNF-alpha, IL-10, and RANK/RANKL in a rat model of ulcerative colitis. Pharmacol Rep. 2015; 67(3): 520-526. doi:10.1016/j.pharep.2014.12.011
- 46Jahovic N, Ercan F, Gedik N, Yuksel M, Sener G, Alican I. The effect of angiotensin-converting enzyme inhibitors on experimental colitis in rats. Regul Pept. 2005; 130(1–2): 67-74. doi:10.1016/j.regpep.2005.03.009
- 47Manna MJ, Abu-Raghif A, Abbood MS. Effect of captopril on inflammatory biomarkers, oxidative stress parameters. J Pharm Sci Res. 2017; 9(9): 1629-1636.
- 48Li Y, Zuo L, Zhu W, et al. Telmisartan attenuates the inflamed mesenteric adipose tissue in spontaneous colitis by mechanisms involving regulation of neurotensin/microRNA-155 pathway. Biochem Pharmacol. 2015; 93(4): 461-469. doi:10.1016/j.bcp.2014.12.020
- 49Nagib MM, Tadros MG, ElSayed MI, Khalifa AE. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats. Toxicol Appl Pharmacol. 2013; 271(1): 106-113. doi:10.1016/j.taap.2013.04.026
- 50Murad H, Ahmed O, Alqurashi T, Hussien M. Olmesartan medoxomil self-microemulsifying drug delivery system reverses apoptosis and improves cell adhesion in trinitrobenzene sulfonic acid-induced colitis in rats. Drug Deliv. 2022; 29(1): 2017-2028. doi:10.1080/10717544.2022.2086939
- 51Saber S, Basuony M, Eldin AS. Telmisartan ameliorates dextran sodium sulfate-induced colitis in rats by modulating NF-kappaB signalling in the context of PPARgamma agonistic activity. Arch Biochem Biophys. 2019; 671: 185-195. doi:10.1016/j.abb.2019.07.014
- 52Saber S, Khalil RM, Abdo WS, Nassif D, El-Ahwany E. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFkappaB and Nrf-2/HO-1 signaling crosstalk. Toxicol Appl Pharmacol. 2019; 364: 120-132. doi:10.1016/j.taap.2018.12.020
- 53Santiago OI, Rivera E, Ferder L, Appleyard CB. An angiotensin II receptor antagonist reduces inflammatory parameters in two models of colitis. Regul Pept. 2008; 146(1–3): 250-259. doi:10.1016/j.regpep.2007.10.004
- 54Fatima DSA, Ahmad AM. Ameliorative effect of olmesartan medoxomil on acetic acid-induced colitis in rats. Int J Pharmaceut Clin Res. 2016; 8(6): 604-609.
- 55Ray S, De Salvo C, Lopetuso LR, et al. Losartan abrogates intestinal fibrosis after steroid induced remission in experimental ileitis. Gastroenterology. 2015; 148(4): S-26. doi:10.1016/S0016-5085(15)30091-3
- 56Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993; 69(2): 238-249.
- 57Appleyard CB, Wallace JL. Reactivation of hapten-induced colitis and its prevention by anti-inflammatory drugs. Am J Physiol. 1995; 269(1 Pt 1): G119-G125. doi:10.1152/ajpgi.1995.269.1.G119
- 58Efsen E, Saermark T, Hansen A, Bruun E, Brynskov J. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas. Basic Clin Pharmacol Toxicol. 2011; 109(3): 208-216. doi:10.1111/j.1742-7843.2011.00713.x
- 59Jacobs JD, Wagner T, Gulotta G, et al. Impact of angiotensin II signaling blockade on clinical outcomes in patients with inflammatory bowel disease. Dig Dis Sci. 2019; 64(7): 1938-1944. doi:10.1007/s10620-019-5474-4
- 60Mantaka A, Tsoukali E, Fragkaki M, et al. Is there any role of renin-angiotensin system inhibitors in modulating inflammatory bowel disease outcome? Eur J Gastroenterol Hepatol. 2021; 33(3): 364-371. doi:10.1097/MEG.0000000000001912
- 61Fairbrass KM, Hoshen D, Ford A, et al. Do ACE inhibitors and angiotensin II receptor blockers improve disease outcomes in inflammatory bowel disease? J Crohns Colitis. 2020; 14(Supplement_1): S380-S381. doi:10.1093/ecco-jcc/jjz203.546
10.1093/ecco-jcc/jjz203.546 Google Scholar
- 62Fairbrass KM, Hoshen D, Gracie DJ, Ford AC. Effect of ACE inhibitors and angiotensin II receptor blockers on disease outcomes in inflammatory bowel disease. Gut. 2021; 70(1): 218-219. doi:10.1136/gutjnl-2020-321186
- 63Garg M, Royce SG, Tikellis C, et al. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: a novel therapeutic target? Gut. 2020; 69(5): 841-851. doi:10.1136/gutjnl-2019-318512
- 64Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RR. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015; 7(1): 29. doi:10.1186/s13099-015-0076-y
- 65Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007; 2(3): 541-546. doi:10.1038/nprot.2007.41
- 66Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol. 2014; 18(4): 279-288. doi:10.4196/kjpp.2014.18.4.279
- 67Bramhall M, Florez-Vargas O, Stevens R, Brass A, Cruickshank S. Quality of methods reporting in animal models of colitis. Inflamm Bowel Dis. 2015; 21(6): 1248-1259. doi:10.1097/MIB.0000000000000369
- 68Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020; 4(1):e100115. doi:10.1136/bmjos-2020-100115
- 69Talbot SR, Biernot S, Bleich A, et al. Defining body-weight reduction as a humane endpoint: a critical appraisal. Lab Anim. 2020; 54(1): 99-110. doi:10.1177/0023677219883319
- 70Soliman GA, Gabr GA, al-Saikhan FI, et al. Protective effects of two Astragalus species on ulcerative colitis in rats. Trop J Pharmaceut Res. 2016; 15(10): 2155. doi:10.4314/tjpr.v15i10.14
- 71Ostanin DV, Bao J, Koboziev I, et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol Gastrointest Liver Physiol. 2009; 296(2): G135-G146. doi:10.1152/ajpgi.90462.2008
- 72Perse M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012; 2012: 1-13. doi:10.1155/2012/718617
- 73Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. Drug des Devel Ther. 2013; 7: 1341-1357. doi:10.2147/DDDT.S40107
- 74Bressenot A, Geboes K, Vignaud JM, Gueant JL, Peyrin-Biroulet L. Microscopic features for initial diagnosis and disease activity evaluation in inflammatory bowel disease. Inflamm Bowel Dis. 2013; 19(8): 1745-1752. doi:10.1097/MIB.0b013e318281f2e8
- 75Villanacci V, Reggiani-Bonetti L, Salviato T, et al. Histopathology of IBD colitis. A practical approach from the pathologists of the Italian Group for the study of the gastrointestinal tract (GIPAD). Pathologica. 2021; 113(1): 39-53. doi:10.32074/1591-951X-235
- 76Vespa E, D'Amico F, Sollai M, et al. Histological scores in patients with inflammatory bowel diseases: the state of the art. J Clin Med. 2022; 11(4):939. doi:10.3390/jcm11040939
- 77Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: a review. IEEE Rev Biomed Eng. 2009; 2: 147-171. doi:10.1109/RBME.2009.2034865
- 78Bahrami G, Malekshahi H, Miraghaee S, Madani H, Babaei A. Improving animal model of induced colitis by acetic acid in terms of fibrosis and inflammation incidence in the colon. J Invest Surg. 2022; 35(1): 214-222. doi:10.1080/08941939.2020.1821844
- 79Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996; 157(3): 1261-1270. doi:10.4049/jimmunol.157.3.1261
- 80Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004; 113(10): 1490-1497. doi:10.1172/JCI19836
- 81Camoglio L, Te Velde AA, Tigges AJ, Das PK, Van Deventer SJ. Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis. 1998; 4(4): 285-290. doi:10.1097/00054725-199811000-00005
- 82Melgar S, Yeung MM, Bas A, et al. Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clin Exp Immunol. 2003; 134(1): 127-137. doi:10.1046/j.1365-2249.2003.02268.x
- 83Rana SV, Sharma S, Kaur J, et al. Relationship of cytokines, oxidative stress and GI motility with bacterial overgrowth in ulcerative colitis patients. J Crohns Colitis. 2014; 8(8): 859-865. doi:10.1016/j.crohns.2014.01.007
- 84Brookes MJ, Whitehead S, Gaya DR, Hawthorne AB. Practical guidance on the use of faecal calprotectin. Frontline Gastroenterol. 2018; 9(2): 87-91. doi:10.1136/flgastro-2016-100762