Piece-wise constant cluster modelling of dynamics of upwelling patterns
Corresponding Author
Susana Nascimento
Department of Computer Science and NOVA Laboratory for Computer Science and Informatics (NOVA-LINCS), NOVA School of Science and Technology, Lisboa, Portugal
Correspondence
Susana Nascimento, Department of Computer Science and NOVA Laboratory for Computer Science and Informatics (NOVA-LINCS), NOVA School of Science and Technology, Lisboa, Portugal.
Email: [email protected]
Search for more papers by this authorAlexandre Martins
Department of Computer Science and NOVA Laboratory for Computer Science and Informatics (NOVA-LINCS), NOVA School of Science and Technology, Lisboa, Portugal
Search for more papers by this authorPaulo Relvas
Department of Earth Marine and Environmental Sciences, Universidade do Algarve / Centre of Marine Sciences (CCMAR), Faro, Portugal
Search for more papers by this authorJoaquim F. Luís
Department of Earth Marine and Environmental Sciences, Universidade do Algarve / Instituto Don Luis (IDL), Faro, Portugal
Search for more papers by this authorBoris Mirkin
Department of Data Analysis and Artificial Intelligence, National Research University Higher School of Economics, Moscow, Russian Federation, Moscow, Russian Federation
Department of Computer Science, Birkbeck University of London, London, UK
Search for more papers by this authorCorresponding Author
Susana Nascimento
Department of Computer Science and NOVA Laboratory for Computer Science and Informatics (NOVA-LINCS), NOVA School of Science and Technology, Lisboa, Portugal
Correspondence
Susana Nascimento, Department of Computer Science and NOVA Laboratory for Computer Science and Informatics (NOVA-LINCS), NOVA School of Science and Technology, Lisboa, Portugal.
Email: [email protected]
Search for more papers by this authorAlexandre Martins
Department of Computer Science and NOVA Laboratory for Computer Science and Informatics (NOVA-LINCS), NOVA School of Science and Technology, Lisboa, Portugal
Search for more papers by this authorPaulo Relvas
Department of Earth Marine and Environmental Sciences, Universidade do Algarve / Centre of Marine Sciences (CCMAR), Faro, Portugal
Search for more papers by this authorJoaquim F. Luís
Department of Earth Marine and Environmental Sciences, Universidade do Algarve / Instituto Don Luis (IDL), Faro, Portugal
Search for more papers by this authorBoris Mirkin
Department of Data Analysis and Artificial Intelligence, National Research University Higher School of Economics, Moscow, Russian Federation, Moscow, Russian Federation
Department of Computer Science, Birkbeck University of London, London, UK
Search for more papers by this authorAbstract
A comprehensive approach is presented to analyse season's coastal upwelling represented by weekly sea surface temperature (SST) image grids. Our three-stage data recovery clustering method assumes that the season's upwelling can be divided into shorter periods of stability, ranges, each to be represented by a constant core and variable shell parts. Corresponding clustering algorithms parameters are automatically derived by using the least-squares clustering criterion. The approach has been successfully applied to real-world SST data covering two distinct regions: Portuguese coast and Morocco coast, for 16 years each.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Abidi, Z. E., Minaoui, K., Tamim, A., & Laanaya, H. (2018). Delineation of moroccan coastal upwelling using the principal component analysis fusion algorithm on ssc and sst images. In 2018 9th international symposium on signal, image, video and communications—isivc 2018 (pp. 174–178). https://doi.org/10.1109/ISIVC.2018.8709227
10.1109/ISIVC.2018.8709227 Google Scholar
- Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647. https://doi.org/10.1109/34.295913
- Agrawal, K., Garg, S., Sharma, S., & Patel, P. (2016). Development and validation of optics based spatio-temporal clustering technique. Information Sciences, 369(C), 388–401. https://doi.org/10.1016/j.ins.2016.06.048
10.1016/j.ins.2016.06.048 Google Scholar
- Alam, M. M., Torgo, L., & Bifet, A. (2022). A survey on spatio-temporal data analytics systems. ACM Computing Surveys, 54(10s), 1–38. https://doi.org/10.1145/3507904
- Ansari, M. Y., Ahmad, A., Khan, S. S., Bhushan, G., & Mainuddin. (2019). Spatiotemporal clustering: A review. Artificial Intelligence Review, 53, 2381–2423. https://doi.org/10.1007/s10462-019-09736-1
- Aouni, A. E., Daoudi, K., Minaoui, K., & Yahia, H. (2021). Robust detection of the north-west african upwelling from sst images. IEEE Geoscience and Remote Sensing Letters, 18(4), 573–576. https://doi.org/10.1109/LGRS.2020.2983826
- Atluri, G., Karpatne, A., & Kumar, V. (2018). Spatio-temporal data mining: A survey of problems and methods. ACM Computing Surveys, 51(4), 1–41. https://doi.org/10.1145/3161602
- Barton, E., & Arístegui, J. (2004). The canary islands coastal transition zone: Upwelling, eddies and filaments. Progress in Oceanography, 62(2–4), 67–69. https://doi.org/10.1016/j.pocean.2004.08.003
- Birant, D., & Kut, R. A. (2007). St-dbscan: An algorithm for clustering spatial-temporal data. Data & Knowledge Engineering, 60, 208–221. https://doi.org/10.1016/j.datak.2006.01.013
- Chen, X. C., Faghmous, J. H., Khandelwal, A., & Kumar, V. (2015). Clustering dynamic spatio-temporal patterns in the presence of noise and missing data. In Proceedings of the 24th international conference on artificial intelligence (p. 2575–2581). AAAI Press. https://doi.org/10.5555/2832581.2832609
10.5555/2832581.2832609 Google Scholar
- Chiang, M. M. T., & Mirkin, B. (2010). Intelligent choice of the number of clusters in k-means clustering: An experimental study with different cluster spreads. Journal of Classification, 27(1), 3–40. https://doi.org/10.1007/s00357-010-9049-5
- Donatelli, C., Duran-Matute, M., Gräwe, U., & Gerkema, T. (2022). Statistical detection of spatio-temporal patterns in the salinity field within an inter-tidal basin. Estuaries and Coasts, 45, 2345–2361. https://doi.org/10.1007/s12237-022-01089-3
- Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 96, 226–231. https://doi.org/10.5555/3001460.3001507
10.5555/3001460.3001507 Google Scholar
- Evers, M., & Linsen, L. (2022). Multi-dimensional parameter-space partitioning of spatio-temporal simulation ensembles. Computers and Graphics, 104, 140–151. https://doi.org/10.48550/arXiv.2205.00980
- Houghton, I. A., & Wilson, J. D. (2020). El niño detection via unsupervised clustering of Argo temperature profiles. Journal of Geophysical Research: Oceans, 125(9), e2019JC015947. https://doi.org/10.1029/2019jc015947
10.1029/2019JC015947 Google Scholar
- Huang, Z., & Wang, X. H. (2019). Mapping the spatial and temporal variability of the upwelling systems of the australian south-eastern coast using 14-year of modis data. Remote Sensing of Environment, 227, 90–109. https://doi.org/10.1016/j.rse.2019.04.002
- Jacox, M. G., Edwards, C. A., Hazen, E. L., & Bograd, S. J. (2018). Coastal upwelling revisited: Ekman, bakun, and improved upwelling indices for the U.S. west coast. Journal of Geophysical Research: Oceans, 123(10), 7332–7350. https://doi.org/10.1029/2018jc014187
- Kamenetsky, M. E., Lee, J., Zhu, J., & Gangnon, R. E. (2022). Regularized spatial and spatio-temporal cluster detection. Spatial and Spatio-Temporal Epidemiology, 41, 100462. https://doi.org/10.1016/j.sste.2021.100462
- Konstantaras, A. (2020). Deep learning and parallel processing spatio-temporal clustering unveil new ionian distinct seismic zone. Informatics, 7(4), 39. https://doi.org/10.3390/informatics7040039
10.3390/informatics7040039 Google Scholar
- Kulldorff, M., & Nagarwalla, N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine, 14, 799–810. https://doi.org/10.1002/sim.4780140809
- Lehmann, A., Myrberg, K., & Höflich, K. (2012). A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanologia, 54(3), 369–393. https://doi.org/10.5697/oc.54-3.369
- Leitão, F., Baptista, V., Vieira, V., Silva, P. L., Relvas, P., & Teodósio, M. A. (2019). A 60-year time series analyses of the upwelling along the portuguese coast. Water, 11(6), 1285. https://doi.org/10.3390/w11061285
- Liu, J., Xue, C., Dong, Q., Wu, C., & Xu, Y. (2019). A process-oriented spatiotemporal clustering method for complex trajectories of dynamic geographic phenomena. IEEE Access, 7, 155951–155964. https://doi.org/10.1109/access.2019.2949049
- Martino, F. D., Pedrycz, W., & Sessa, S. (2018). Spatiotemporal extended fuzzy c-means clustering algorithm for hotspots detection and prediction. Fuzzy Sets and Systems, 340, 109–126. https://doi.org/10.1016/j.fss.2017.11.011
- Mattera, R. (2022). A weighted approach for spatio-temporal clustering of covid-19 spread in Italy. Spatial and Spatio-Temporal Epidemiology, 41, 100500. https://doi.org/10.1016/j.sste.2022.100500
- Mirkin, B. (2012). Clustering: A data recovery approach ( 2nd ed.). Chapman and Hall/CRC Press. https://doi.org/10.1201/b13101
10.1201/b13101 Google Scholar
- Mozdzen, A., Cremaschi, A., Cadonna, A., Guglielmi, A., & Kastner, G. (2022). Bayesian modeling and clustering for spatio-temporal areal data: An application to italian unemployment. Spatial Statistics, 52, 100715. https://doi.org/10.1016/j.spasta.2022.100715
- Nascimento, S., Casca, S., & Mirkin, B. (2015). A seed expanding cluster algorithm for deriving upwelling areas on sea surface temperature images. Computers & Geosciences, 85, 74–85. https://doi.org/10.1016/j.cageo.2015.06.002
- Nascimento, S., Franco, P., Sousa, F., Dias, J., & Neves, F. (2012). Automated computational delimitation of sst upwelling areas using fuzzy clustering. Computers & Geosciences, 43, 207–216. https://doi.org/10.1016/j.cageo.2011.10.025
- Nascimento, S., Mateen, S., & Relvas, P. (2020). Sequential self-tuning clustering for automatic delimitation of coastal upwelling on sst images. In C. Analide, P. Novais, D. Camacho, & H. Yin (Eds.), Intelligent data engineering and automated learning: Ideal 2020 (pp. 434–443). Springer International Publishing. https://doi.org/10.1007/978-3-030-62365-4_41
10.1007/978-3-030-62365-4_41 Google Scholar
- Nowicki, A., Janecki, M., & Dzierzbicka-Głowacka, L. (2019). Operational system for automatic coastal upwelling detection in the Baltic Sea based on the 3d CEMBS model. Journal of Operational Oceanography, 12(2), 104–115. https://doi.org/10.1080/1755876x.2019.1569748
- Ramachandra, B., Dutton, B., & Vatsavai, R. R. (2019). Anomalous cluster detection in spatiotemporal meteorological fields. Statistical Analysis and Data Mining: The ASA Data Science Journal, 12(2), 88–100. https://doi.org/10.1002/sam.11398
- Ramanantsoa, J. D., Krug, M., Penven, P., Rouault, M., & Gula, J. (2018). Coastal upwelling south of Madagascar: Temporal and spatial variability. Journal of Marine Systems, 178, 29–37. https://doi.org/10.1016/j.jmarsys.2017.10.005
- Relvas, P., Luís, J., & Santos, A. M. P. (2009). Importance of the mesoscale in the decadal changes observed in the northern canary upwelling system. Geophysical Research Letters, 36(22), L22601. https://doi.org/10.1029/2009gl040504
10.1029/2009GL040504 Google Scholar
- Rodin, I., & Mirkin, B. (2017). Supercluster in statics and dynamics: An approximate structure imitating a rough set. In L. Polkowski, et al. (Eds.), Rough sets (pp. 576–586). Springer International Publishing. https://doi.org/10.1007/978-3-319-60837-2_46
10.1007/978-3-319-60837-2_46 Google Scholar
- Sambe, F., & Suga, T. (2022). Unsupervised clustering of argo temperature and salinity profiles in the mid-latitude northwest pacific ocean and revealed influence of the kuroshio extension variability on the vertical structure distribution. Journal of Geophysical Research: Oceans, 127(3), e2021JC018138. https://doi.org/10.1029/2021JC018138
- Shi, W., Huang, Z., & Hu, J. (2021). Using tpi to map spatial and temporal variations of significant coastal upwelling in the northern South China Sea. Remote Sensing, 13(6), 1065. https://doi.org/10.3390/rs13061065
- Siemer, J. P., Machín, F., González-Vega, A., Arrieta, J. M., Gutiérrez-Guerra, M. A., Pérez-Hernández, M. D., & Fraile-Nuez, E. (2021). Recent trends in sst, chl-a, productivity and wind stress in upwelling and open ocean areas in the upper eastern North Atlantic subtropical gyre. Journal of Geophysical Research: Oceans, 126(8), e2021JC017268. https://doi.org/10.1029/2021JC017268
- Tamim, A., Minaoui, K., Daoudi, K., Yahia, H., Atillah, A., & Aboutajdine, D. (2015). An efficient tool for automatic delimitation of moroccan coastal upwelling using SST images. IEEE Geoscience and Remote Sensing Letters, 12(4), 875–879. https://doi.org/10.1109/lgrs.2014.2365558
- Tamim, A., Minaoui, K., Daoudi, K., Yahia, H., Atillah, A., Fellah, S. E., & Ansari, M. E. (2019). Automatic detection of moroccan coastal upwelling zones using sea surface temperature images. International Journal of Remote Sensing, 40(7), 2648–2666. https://doi.org/10.1080/01431161.2018.1528513
- Tonini, M., Pecoraro, G., Romailler, K., & Calvello, M. (2022). Spatio-temporal cluster analysis of recent italian landslides. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 16, 536–554. https://doi.org/10.1080/17499518.2020.1861634
10.1080/17499518.2020.1861634 Google Scholar
- Wazarkar, S., & Keshavamurthy, B. N. (2018). A survey on image data analysis through clustering techniques for real world applications. Journal of Visual Communication and Image Representation, 55, 596–626. https://doi.org/10.1016/j.jvcir.2018.07.009
- Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564. https://doi.org/10.1029/2019GC008515
- Yu, M., Bambacus, M., Cervone, G., Clarke, K., Duffy, D., Huang, Q., & Yang, C. (2020). Spatiotemporal event detection: A review. International Journal of Digital Earth, 13(12), 1339–1365. https://doi.org/10.1080/17538947.2020.1738569
- Zhang, D., Lee, K., & Lee, I. (2018). Hierarchical trajectory clustering for spatio-temporal periodic pattern mining. Expert Systems with Applications, 92, 1–11. https://doi.org/10.1016/j.eswa.2017.09.040