Induction of IL-32 in the immune response of keratinocytes to Mycobacterium marinum infection
Xu Sang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorXiaotong Xue
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorZihao Mi
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorZhenzhen Wang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorXueping Yu
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorLele Sun
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorShanshan Ma
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorZhe Wang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorCorresponding Author
Hong Liu
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Correspondence
Furen Zhang and Hong Liu, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Furen Zhang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Correspondence
Furen Zhang and Hong Liu, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Email: [email protected] and [email protected]
Search for more papers by this authorXu Sang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorXiaotong Xue
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorZihao Mi
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorZhenzhen Wang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorXueping Yu
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorLele Sun
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorShanshan Ma
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorZhe Wang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Search for more papers by this authorCorresponding Author
Hong Liu
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Correspondence
Furen Zhang and Hong Liu, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Furen Zhang
Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
Correspondence
Furen Zhang and Hong Liu, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Email: [email protected] and [email protected]
Search for more papers by this authorAbstract
Keratinocytes are the predominant cell type in the skin epidermis, and they not only protect the skin from the influence of external physical factors but also function as an immune barrier against microbial invasion. However, little is known regarding the immune defence mechanisms of keratinocytes against mycobacteria. Here, we performed single-cell RNA sequencing (scRNA-seq) on skin biopsy samples from patients with Mycobacterium marinum infection and bulk RNA sequencing (bRNA-seq) on M. marinum-infected keratinocytes in vitro. The combined analysis of scRNA-seq and bRNA-seq data revealed that several genes were upregulated in M. marinum-infected keratinocytes. Further in vitro validation of these genes by quantitative polymerase chain reaction and western blotting assay confirmed the induction of IL-32 in the immune response of keratinocytes to M. marinum infection. Immunohistochemistry also showed the high expression of IL-32 in patients' lesions. These findings suggest that IL-32 induction is a possible mechanism through which keratinocytes defend against M. marinum infection; this could provide new targets for the immunotherapy of chronic cutaneous mycobacterial infections.
CONFLICT OF INTEREST STATEMENT
The authors declare no potential conflicts of interest. All subjects provided written informed consent, and this study was approved by the institutional ethics committee of Shandong Provincial Institute of Dermatology and Venerology.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
exd14848-sup-0001-TableS1.xlsxExcel 2007 spreadsheet , 9.4 KB |
Table S1. Patients information |
exd14848-sup-0002-TableS2.xlsxExcel 2007 spreadsheet , 10.4 KB |
Table S2. Primer sequence used in qPCR experiment |
exd14848-sup-0003-TableS3.xlsxExcel 2007 spreadsheet , 403.8 KB |
Table S3. Differentially expressed genes in scRNA-seq data |
exd14848-sup-0004-TableS4.xlsxExcel 2007 spreadsheet , 16.4 KB |
Table S4. Differentially expressed genes in bRNA-seq data |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Piipponen M, Li D, Landén NX. The immune functions of keratinocytes in skin wound healing. Int J Mol Sci. 2020; 21(22):8790. doi:10.3390/ijms21228790
- 2Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun. 2005; 73(10): 6771-6781. doi:10.1128/iai.73.10.6771-6781.2005
- 3Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009; 9(10): 679-691. doi:10.1038/nri2622
- 4Grange PA, Weill B, Dupin N, Batteux F. Does inflammatory acne result from imbalance in the keratinocyte innate immune response? Microbes Infect. 2010; 12(14–15): 1085-1090. doi:10.1016/j.micinf.2010.07.015
- 5Jiang Y, Tsoi LC, Billi AC, et al. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight. 2020; 5(20):142067. doi:10.1172/jci.insight.142067
- 6Miller LS. Toll-like receptors in skin. Adv dermatol. 2008; 24: 71-87. doi:10.1016/j.yadr.2008.09.004
- 7Nguyen MT, Peisl L, Barletta F, Luqman A, Götz F. Toll-like receptor 2 and lipoprotein-like lipoproteins enhance Staphylococcus aureus invasion in epithelial cells. Infect Immun. 2018; 86(8):00343-18. doi:10.1128/iai.00343-18
- 8Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defence against bacterial skin infections. J Invest Dermatol. 2010; 130(9): 2211-2221. doi:10.1038/jid.2010.123
- 9Simanski M, Dressel S, Gläser R, Harder J. RNase 7 protects healthy skin from Staphylococcus aureus colonization. J Invest Dermatol. 2010; 130(12): 2836-2838. doi:10.1038/jid.2010.217
- 10Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J biol chem. 2001; 276(8): 5707-5713. doi:10.1074/jbc.M008557200
- 11Nagy I, Pivarcsi A, Koreck A, Széll M, Urbán E, Kemény L. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005; 124(5): 931-938. doi:10.1111/j.0022-202X.2005.23705.x
- 12Su Q, Grabowski M, Weindl G. Recognition of Propionibacterium acnes by human TLR2 heterodimers. Int J Med Microbiol. 2017; 307(2): 108-112. doi:10.1016/j.ijmm.2016.12.002
- 13Franco-Paredes C, Marcos LA, Henao-Martínez AF, et al. Cutaneous mycobacterial infections. Clin Microbiol Rev. 2018; 32: 1. doi:10.1128/cmr.00069-18
- 14Seidel A, Nunes DH, Fernandes C, Funchal GDG. Skin infection by Mycobacterium marinum –diagnostic and therapeutic challenge. An Bras Dermatol. 2022; 97(3): 366-368. doi:10.1016/j.abd.2021.03.013
- 15Scollard DM, Dacso MM, Abad-Venida ML. Tuberculosis and Leprosy: classical granulomatous diseases in the twenty-first century. Dermatol Clin. 2015; 33(3): 541-562. doi:10.1016/j.det.2015.03.016
- 16Walker SL, Lockwood DN. Leprosy. Clin Dermatol. 2007; 25(2): 165-172. doi:10.1016/j.clindermatol.2006.05.012
- 17Röltgen K, Stinear TP, Pluschke G. The genome, evolution and diversity of Mycobacterium ulcerans. Infect Genet Evol. 2012; 12(3): 522-529. doi:10.1016/j.meegid.2012.01.018
- 18Yoshida M, Fukano H, Miyamoto Y, Shibayama K, Suzuki M, Hoshino Y. Complete genome sequence of Mycobacterium marinum ATCC 927(T), obtained using nanopore and illumina sequencing technologies. Genome Announc. 2018; 6(20):e00397-18. doi:10.1128/genomeA.00397-18
- 19Bezerra GH, Honório MLP, Costa V, et al. Mycobacterium marinum infection simulating chromomycosis: a case report. Revista do Instituto de Medicina Tropical de Sao Paulo. 2020; 62:e95. doi:10.1590/s1678-9946202062095
- 20Tuan J, Spichler-Moffarah A, Ogbuagu O. Mycobacterium marinum: nodular hand lesions after a fishing expedition. BMJ case reports. 2020; 13(12): 835. doi:10.1136/bcr-2020-238
10.1136/bcr-2020-238835 Google Scholar
- 21Nenoff P, Klapper BM, Mayser P, Paasch U, Handrick W. Infections due to Mycobacterium marinum: a review. Hautarzt. 2011; 62(4): 266-271. doi:10.1007/s00105-010-2095-4
- 22Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol. 2008; 10(5): 1027-1039. doi:10.1111/j.1462-5822.2008.01133.x
- 23Stinear TP, Seemann T, Harrison PF, et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome research. 2008; 18(5): 729-741. doi:10.1101/gr.075069.107
- 24Lienard J, Carlsson F. Murine Mycobacterium marinum infection as a model for tuberculosis. Methods Mol Biol. 2017; 1535: 301-315. doi:10.1007/978-1-4939-6673-8_20
- 25Bohaud C, Johansen MD, Varga B, et al. Exploring macrophage-dependent wound regeneration during mycobacterial infection in Zebrafish. Front Immunol. 2022; 13:838425. doi:10.3389/fimmu.2022.838425
- 26Mi Z, Wang Z, Xue X, et al. The immune-suppressive landscape in lepromatous leprosy revealed by single-cell RNA sequencing. Cell discovery. 2022; 8(1): 2. doi:10.1038/s41421-021-00353-3
- 27Yaseen Z, Gide TN, Conway JW, et al. Validation of an accurate automated multiplex immunofluorescence method for immuno-profiling melanoma. Front Mol Biosci. 2022; 9:810858. doi:10.3389/fmolb.2022.810858
- 28Abdullahi Sidi F, Bingham V, Craig SG, et al. PD-L1 multiplex and quantitative image analysis for molecular diagnostics. Cancers. 2020; 13(1):29. doi:10.3390/cancers13010029
- 29Vanguri R, Benhamida J, Young JH, et al. Understanding the impact of chemotherapy on the immune landscape of high-grade serous ovarian cancer. Gynecol Oncol Rep. 2022; 39:100926. doi:10.1016/j.gore.2022.100926
- 30Lee SW, Lee HY, Kang SW, et al. Application of immunoprofiling using multiplexed immunofluorescence staining identifies the prognosis of patients with high-grade serous ovarian cancer. Int J Mol Sci. 2021; 22(17):9638. doi:10.3390/ijms22179638
- 31Smith AJ, Toledo CM, Wietgrefe SW, et al. The immunosuppressive role of IL-32 in lymphatic tissue during HIV-1 infection. J Immunol. 2011; 186(11): 6576-6584. doi:10.4049/jimmunol.1100277
- 32Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity. 2005; 22(1): 131-142. doi:10.1016/j.immuni.2004.12.003
- 33Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic cell-derived IL-32α: a novel inhibitory cytokine of NK cell function. J Immunol. 2017; 199(4): 1290-1300. doi:10.4049/jimmunol.1601477
- 34Shoda H, Fujio K, Yamaguchi Y, et al. Interactions between IL-32 and tumour necrosis factor alpha contribute to the exacerbation of immune-inflammatory diseases. Arthritis Res Ther. 2006; 8(6): R166. doi:10.1186/ar2074
- 35Moschen AR, Fritz T, Clouston AD, et al. Interleukin-32: a new proinflammatory cytokine involved in hepatitis C virus-related liver inflammation and fibrosis. Hepatology. 2011; 53(6): 1819-1829. doi:10.1002/hep.24285
- 36Bai X, Kim SH, Azam T, et al. IL-32 is a host protective cytokine against Mycobacterium tuberculosis in differentiated THP-1 human macrophages. J Immunol. 2010; 184(7): 3830-3840. doi:10.4049/jimmunol.0901913
- 37Radom-Aizik S, Zaldivar F Jr, Leu SY, Galassetti P, Cooper DM. Effects of 30 min of aerobic exercise on gene expression in human neutrophils. J Appl Physiol. 2008; 104(1): 236-243. doi:10.1152/japplphysiol.00872.2007
- 38Meyer N, Zimmermann M, Bürgler S, et al. IL-32 is expressed by human primary keratinocytes and modulates keratinocyte apoptosis in atopic dermatitis. J Allergy Clin Immunol. 2010; 125(4): 858-865.e10. doi:10.1016/j.jaci.2010.01.016
- 39Nold-Petry CA, Nold MF, Zepp JA, Kim SH, Voelkel NF, Dinarello CA. IL-32-dependent effects of IL-1beta on endothelial cell functions. Proc Natl Acad Sci USA. 2009; 106(10): 3883-3888. doi:10.1073/pnas.0813334106
- 40Shoda H, Fujio K, Yamamoto K. Rheumatoid arthritis and interleukin-32. Cell Mol Life Sci. 2007; 30(5): 398-403. doi:10.2177/jsci.30.398
10.2177/jsci.30.398 Google Scholar
- 41Li W, Deng W, Xie J. The biology and role of interleukin-32 in tuberculosis. J Immunol Res. 2018; 2018:1535194. doi:10.1155/2018/1535194
- 42Heinhuis B, Koenders MI, van Riel PL, et al. Tumour necrosis factor alpha-driven IL-32 expression in rheumatoid arthritis synovial tissue amplifies an inflammatory cascade. Ann Rheum Dis. 2011; 70(4): 660-667. doi:10.1136/ard.2010.139196
- 43Li Y, Wang Z. Interleukin 32 participates in cardiomyocyte-induced oxidative stress, inflammation and apoptosis during hypoxia/reoxygenation via the NOD2/NOX2/MAPK signalling pathway. Exp Ther Med. 2022; 24(3): 567. doi:10.3892/etm.2022.11504
- 44Netea MG, Azam T, Lewis EC, et al. Mycobacterium tuberculosis induces interleukin-32 production through a caspase-1/IL-18/interferon-gamma-dependent mechanism. PLoS medicine. 2006; 3(8):e277. doi:10.1371/journal.pmed.0030277
- 45Bai X, Ovrutsky AR, Kartalija M, et al. IL-32 expression in the airway epithelial cells of patients with Mycobacterium avium complex lung disease. Int Immunol. 2011; 23(11): 679-691. doi:10.1093/intimm/dxr075
- 46Schenk M, Krutzik SR, Sieling PA, et al. NOD2 triggers an interleukin-32-dependent human dendritic cell program in leprosy. Nat Med. 2012; 18(4): 555-563. doi:10.1038/nm.2650
- 47Bai X, Shang S, Henao-Tamayo M, et al. Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci US A. 2015; 112(16): 5111-5116. doi:10.1073/pnas.1424302112