Different levels of EGF, VEGF, IL-6, MCP-1, MCP-3, IP-10, Eotaxin and MIP-1α in the adipose-derived stem cell secretome in androgenetic alopecia
Corresponding Author
Katarina Andjelkov
University of Belgrade, Faculty of Medicine and BelPrime Clinic, Belgrade, Serbia
Correspondence
Katarina Andjelkov, 16 Brane Crncevica, Belgrade, Serbia.
Email: [email protected]
Search for more papers by this authorIlya I. Eremin
Laboratory of Cell Biology and Developmental Pathology FSBSI, Moscow, Russia
Search for more papers by this authorAleksandra Korac
Faculty of Biology, University of Belgrade, Belgrade, Serbia
Search for more papers by this authorCorresponding Author
Katarina Andjelkov
University of Belgrade, Faculty of Medicine and BelPrime Clinic, Belgrade, Serbia
Correspondence
Katarina Andjelkov, 16 Brane Crncevica, Belgrade, Serbia.
Email: [email protected]
Search for more papers by this authorIlya I. Eremin
Laboratory of Cell Biology and Developmental Pathology FSBSI, Moscow, Russia
Search for more papers by this authorAleksandra Korac
Faculty of Biology, University of Belgrade, Belgrade, Serbia
Search for more papers by this authorAbstract
Hair folliculogenesis and hair growth mediated by the secretory properties of white adipocytes may pave the way for the adipose-derived (AD) regenerative therapy for androgenetic alopecia (AGA). Quantitative and qualitative secretome profiling of AD stem cells (ADSCs) from different zones of hair growth in patients with AGA were analysed. 1-mm punch samples of adipose tissue associated with hair follicles, of three scalp areas (balding, non-balding and transition zones) and one periumbilical sample, were used for ADCS isolation. The ADCS secretome was analysed in conditioned media using a 41plex assay. Among the thirty-five signalling proteins analysed, the levels of VEGF, EGF, IL-6, Eotaxin, MCP-3, IFNγ-inducible protein-10 and MIP-1α were higher in the balding zone compared with the non-balding and periumbilical zones. In contrast, MCP-1 was the lowest in the balding zone in comparison with the other zones. The observed differences in the secretome suggest crosstalk between angiogenic and inflammatory processes underlying AGA aetiology and may prove relevant in both the diagnosis of AGA and the application of ADSC secretome for AGA treatment.
CONFLICTS OF INTEREST
The authors have no conflict of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
Research data cannot be shared.
Supporting Information
Filename | Description |
---|---|
exd14548-sup-0001-FigS1.tifTIFF image, 9.8 MB | Fig S1 |
exd14548-sup-0002-TableS1.docxWord 2007 document , 14.1 KB | Table S1 |
exd14548-sup-0003-TableS2.docxWord 2007 document , 13.4 KB | Table S2 |
exd14548-sup-0004-TableS3.docxWord 2007 document , 12.8 KB | Table S3 |
exd14548-sup-0005-TableS4.docxWord 2007 document , 12.6 KB | Table S4 |
exd14548-sup-0006-AppendixS1.docxWord 2007 document , 17.6 KB | Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011; 146(5): 761-771. doi:10.1016/j.cell.2011.07.019
- 2Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication. Exp Dermatol. 2012; 21(11): 827-830. doi:10.1111/exd.12001
- 3Zhang P, Kling RE, Ravuri SK, et al. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. J Tissue Eng. 2014; 5:2041731414556850. Published 2014 Oct 27. doi:10.1177/2041731414556850
10.1177/2041731414556850 Google Scholar
- 4Kruglikov IL, Zhang Z, Scherer PE. The role of immature and mature adipocytes in hair cycling. Trends Endocrinol Metab. 2019; 30(2): 93-105. doi:10.1016/j.tem.2018.11.004
- 5Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: a review. Endocrine. 2017; 57(1): 9-17. doi:10.1007/s12020-017-1280-y
- 6Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 2017; 18(10): 2087. doi:10.3390/ijms18102087
- 7Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012; 18(2): 101-115. doi:10.1089/ten.TEB.2011.0488
- 8Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014; 23(9): 1045-1059. doi:10.3727/096368913X667709
- 9Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy [published correction appears in stem cells. Stem Cells. 2017; 35(4): 851-858. doi:10.1002/stem.2575
- 10Cunnane EM, Ramaswamy AK, Lorentz KL, Vorp DA, Weinbaum JS. Extracellular vesicles derived from primary adipose stromal cells induce elastin and collagen deposition by smooth muscle cells within 3D fibrin gel culture. Bioengineering (Basel). 2021; 8(5): 51. doi:10.3390/bioengineering8050051. Published 2021 Apr 27.
- 11Shin H, Won CH, Chung WK, Park BS. Up-to-date clinical trials of hair regeneration using conditioned media of adipose-derived stem cells in male and female pattern hair loss. Curr Stem Cell Res Ther. 2017; 12(7): 524-530. doi:10.2174/1574888X12666170504120244
- 12Shin H, Ryu HH, Kwon O, Park BS, Jo SJ. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: a retrospective case series study. Int J Dermatol. 2015; 54(6): 730-735. doi:10.1111/ijd.12650
- 13Gimble J, Guilak F. Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy. 2003; 5(5): 362-369. doi:10.1080/14653240310003026
- 14Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods. 2008; 45(2): 115-120. doi:10.1016/j.ymeth.2008.03.006
- 15Araña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. Methods Mol Biol. 2013; 1036: 47-61. doi:10.1007/978-1-62703-511-8_4
- 16Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013; 15(6): 641-648. doi:10.1016/j.jcyt.2013.02.006
- 17Koellensperger E, Bollinger N, Dexheimer V, Gramley F, Germann G, Leimer U. Choosing the right type of serum for different applications of human adipose tissue-derived stem cells: Influence on proliferation and differentiation abilities. Cytotherapy. 2014; 16(6): 789-799. doi:10.1016/j.jcyt.2014.01.007
- 18Mahé YF, Michelet JF, Billoni N, et al. Androgenetic alopecia and microinflammation. Int J Dermatol. 2000; 39(8): 576-584. doi:10.1046/j.1365-4362.2000.00612.x
- 19Gheisari M, Hamidi AB, Hamedani B, Zerehpoush FB. Androgenetic alopecia: An attempt to target microinflammation. Dermatol Ther. 2020; 33(2):e13266. doi:10.1111/dth.13266
- 20Ramos PM, Brianezi G, Martins AC, da Silva MG, Marques ME, Miot HA. Apoptosis in follicles of individuals with female pattern hair loss is associated with perifollicular microinflammation. Int J Cosmet Sci. 2016; 38(6): 651-654. doi:10.1111/ics.12341
- 21Sadgrove NJ. The new paradigm for androgenetic alopecia and plant-based folk remedies: 5α-reductase inhibition, reversal of secondary microinflammation and improving insulin resistance. J Ethnopharmacol. 2018; 227: 206-236. doi:10.1016/j.jep.2018.09.009
- 22Jaworsky C, Kligman AM, Murphy GF. Characterization of inflammatory infiltrates in male pattern alopecia: implications for pathogenesis. Br J Dermatol. 1992; 127(3): 239-246. doi:10.1111/j.1365-2133.1992.tb00121.x
- 23Muneeb F, Hardman JA, Paus R. Hair growth control by innate immunocytes: perifollicular macrophages revisited. Exp Dermatol. 2019; 28(4): 425-431. doi:10.1111/exd.13922
- 24Wang ECE, Higgins CA. Immune cell regulation of the hair cycle. Exp Dermatol. 2020; 29(3): 322-333. 10.1111/exd.14070
- 25Young JW, Conte ET, Leavitt ML, Nafz MA, Schroeter AL. Cutaneous immunopathology of androgenetic alopecia. J Am Osteopath Assoc. 1991; 91(8): 765-771.
- 26Ben-Baruch A, Xu L, Young PR, Bengali K, Oppenheim JJ, Wang JM. Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors. C-C CKR1, a receptor for macrophage inflammatory protein-1 alpha/Rantes, is also a functional receptor for MCP3. J Biol Chem. 1995; 270(38): 22123-22128. doi:10.1074/jbc.270.38.22123
- 27Kabashima H, Yoneda M, Nagata K, Hirofuji T, Maeda K. The presence of chemokine (MCP-1, MIP-1alpha, MIP-1beta, IP-10, RANTES)-positive cells and chemokine receptor (CCR5, CXCR3)-positive cells in inflamed human gingival tissues. Cytokine. 2002; 20(2): 70-77. doi:10.1006/cyto.2002.1985
- 28Boström EA, Kindstedt E, Sulniute R, et al. Increased Eotaxin and MCP-1 levels in serum from individuals with periodontitis and in human gingival fibroblasts exposed to pro-inflammatory cytokines. PLoS One. 2015; 10(8):e0134608. Published 2015 Aug 4. doi:10.1371/journal.pone.0134608
- 29Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010; 411(21–22): 1570-1579. doi:10.1016/j.cca.2010.07.006
- 30Kasumagic-Halilovic E, Prohic A, Cavaljuga S. Tumor necrosis factor-alpha in patients with alopecia areata. Indian J Dermatol. 2011; 56(5): 494-496. doi:10.4103/0019-5154.87124
- 31Kasasa SC, Soory M. The effect of interleukin-1 (IL-1) on androgen metabolism in human gingival tissue (HGT) and periodontal ligament (PDL). J Clin Periodontol. 1996; 23(5): 419-424. doi:10.1111/j.1600-051x.1996.tb00568.x
- 32Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001; 107(4): 409-417. doi:10.1172/JCI11317
- 33Goldman BE, Fisher DM, Ringler SL. Transcutaneous PO2 of the scalp in male pattern baldness: a new piece to the puzzle. Plast Reconstr Surg. 1996; 97(6): 1109-1117. doi:10.1097/00006534-199605000-00003
- 34Peus D, Pittelkow MR. Growth factors in hair organ development and the hair growth cycle. Dermatol Clin. 1996; 14(4): 559-572. doi:10.1016/s0733-8635(05)70384-3
- 35Rezza A, Sennett R, Tanguy M, Clavel C, Rendl M. PDGF signalling in the dermis and in dermal condensates is dispensable for hair follicle induction and formation. Exp Dermatol. 2015; 24(6): 468-470. doi:10.1111/exd.12672
- 36Park BS, Kim WS, Choi JS, et al. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomed Res. 2010; 31(1): 27-34. doi:10.2220/biomedres.31.27
- 37Kim WS, Park BS, Sung JH. Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res. 2009; 301(5): 329-336. doi:10.1007/s00403-009-0951-9
- 38Kuka G, Epstein J, Aronowitz J, et al. Cell enriched autologous fat grafts to follicular niche improves hair regrowth in early androgenetic alopecia. Aesthet Surg J. 2020; 40(6): NP328-NP339. doi:10.1093/asj/sjaa037
- 39Perez-Meza D, Ziering C, Sforza M, Krishnan G, Ball E, Daniels E. Hair follicle growth by stromal vascular fraction-enhanced adipose transplantation in baldness. Stem Cells Cloning. 2017; 10: 1-10. Published 2017 Jul 6. doi:10.2147/SCCAA.S131431
- 40Tak YJ, Lee SY, Cho AR, Kim YS. A randomized, double-blind, vehicle-controlled clinical study of hair regeneration using adipose-derived stem cell constituent extract in androgenetic alopecia. Stem Cells Transl Med. 2020; 9(8): 839-849. doi:10.1002/sctm.19-0410
- 41Won CH, Park GH, Wu X, et al. The basic mechanism of hair growth stimulation by adipose-derived stem cells and their secretory factors. Curr Stem Cell Res Ther. 2017; 12(7): 535-543. doi:10.2174/1574888X12666170829161058
- 42Bellei B, Papaccio F, Filoni A, et al. Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment. Exp Dermatol. 2019; 28(6): 695-703. doi:10.1111/exd.13954
- 43Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol. 2002; 118(2): 216-225. doi:10.1046/j.0022-202x.2001.01670.x
- 44Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014; 15(1): 1647-1670. Published 2014 Jan 22. doi:10.3390/ijms15011647
- 45Egger A, Tomic-Canic M, Tosti A. Advances in stem cell-based therapy for hair loss. Cell R4 Repair Replace Regen Reprogram. 2020; 8:e2894.
- 46Trzyna A, Banaś-Ząbczyk A. Adipose-derived stem cells secretome and its potential application in "stem cell-free therapy". Biomolecules. 2021; 11(6): 878. Published 2021 Jun 13. doi:10.3390/biom11060878
- 47Haslam IS, Zhou G, Xie G, et al. Inhibition of Shh signaling through MAPK activation controls chemotherapy-induced alopecia. J Invest Dermatol. 2021; 141(2): 334-344. doi:10.1016/j.jid.2020.05.118