Paradoxical increase in survival of newborn neurons in the dentate gyrus of mice with constitutive depletion of serotonin
Silvina L. Diaz
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
These two authors contributed equally to this work.Search for more papers by this authorNicolas Narboux-Nême
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
These two authors contributed equally to this work.Search for more papers by this authorSara Trowbridge
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Search for more papers by this authorSophie Scotto-Lomassese
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Search for more papers by this authorFelix B. Kleine Borgmann
Brain Research Institute, University of Zurich, Zurich, Switzerland
Search for more papers by this authorSebastian Jessberger
Brain Research Institute, University of Zurich, Zurich, Switzerland
Search for more papers by this authorBruno Giros
UPMC, Paris, France
CNRS UMR 7224, Paris, France
Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
Search for more papers by this authorLuc Maroteaux
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Search for more papers by this authorEvan Deneris
Case Western Reserve University, Cleveland, OH, USA
Search for more papers by this authorCorresponding Author
Patricia Gaspar
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Correspondence: Patricia Gaspar, INSERM U839, 17, rue du Fer à Moulin, 75005 Paris, France.
E-mail: [email protected]
Search for more papers by this authorSilvina L. Diaz
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
These two authors contributed equally to this work.Search for more papers by this authorNicolas Narboux-Nême
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
These two authors contributed equally to this work.Search for more papers by this authorSara Trowbridge
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Search for more papers by this authorSophie Scotto-Lomassese
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Search for more papers by this authorFelix B. Kleine Borgmann
Brain Research Institute, University of Zurich, Zurich, Switzerland
Search for more papers by this authorSebastian Jessberger
Brain Research Institute, University of Zurich, Zurich, Switzerland
Search for more papers by this authorBruno Giros
UPMC, Paris, France
CNRS UMR 7224, Paris, France
Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
Search for more papers by this authorLuc Maroteaux
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Search for more papers by this authorEvan Deneris
Case Western Reserve University, Cleveland, OH, USA
Search for more papers by this authorCorresponding Author
Patricia Gaspar
Inserm, UMR-S 839, France
UPMC, Paris, France
Institut du Fer à Moulin, Paris, France
Correspondence: Patricia Gaspar, INSERM U839, 17, rue du Fer à Moulin, 75005 Paris, France.
E-mail: [email protected]
Search for more papers by this authorAbstract
Increased adult neurogenesis is a major neurobiological correlate of the beneficial effects of antidepressants. Indeed, selective serotonin (5-HT) re-uptake inhibitors, which increase 5-HT transmission, enhance adult neurogenesis in the dentate gyrus (DG) of the hippocampus. However, the consequences of 5-HT depletion are still unclear as studies using neurotoxins that target serotonergic neurons reached contradictory conclusions on the role of 5-HT on DG cell proliferation. Here, we analysed two genetic models of 5-HT depletion, the Pet1−/− and the VMAT2f/f; SERTcre/+ mice, which have, respectively, 80 and 95% reductions in hippocampal 5-HT. In both models, we found unchanged cell proliferation of the neural precursors in the DG subgranular zone, whereas a significant increase in the survival of newborn neurons was noted 1 and 4 weeks after BrdU injections. This pro-survival trait was phenocopied pharmacologically with 5-HT synthesis inhibitor PCPA treatment in adults, indicating that this effect was not developmental. Furthermore, a 1-week administration of the 5-HT1A receptor agonist 8-OH-DPAT in Pet1−/− and PCPA-treated mice normalised hippocampal cell survival. Overall, our results indicate that constitutive 5-HT depletion does not alter the proliferation of neural precursors in the DG but promotes the survival of newborn cells, an effect which involves activation of postsynaptic 5-HT1A receptors. The role of 5-HT in selective neuronal elimination points to a new facet in its multiple effects in controlling neural circuit maturation.
References
- Banasr, M., Hery, M., Printemps, R. & Daszuta, A. (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacol., 29, 450–460.
- Brandt, M.D., Jessberger, S., Steiner, B., Kronenberg, G., Reuter, K., Bick-Sander, A., von der Behrens, W. & Kempermann, G. (2003) Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell. Neurosci., 24, 603–613.
- Brezun, J.M. & Daszuta, A. (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience, 89, 999–1002.
- Brezun, J.M. & Daszuta, A. (2000) Serotonergic reinnervation reverses lesion-induced decreases in PSA–NCAM labeling and proliferation of hippocampal cells in adult rats. Hippocampus, 10, 37–46.
10.1002/(SICI)1098-1063(2000)10:1<37::AID-HIPO4>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- Dayer, A.G., Ford, A.A., Cleaver, K.M., Yassaee, M. & Cameron, H.A. (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J. Comp. Neurol., 460, 563–572.
- Diaz, S.L., Doly, S., Narboux-Neme, N., Fernandez, S., Mazot, P., Banas, S.M., Boutourlinsky, K., Moutkine, I., Belmer, A., Roumier, A. & Maroteaux, L. (2012) 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol. Psychiatr., 17, 154–163.
- Dupret, D., Fabre, A., Dobrossy, M.D., Panatier, A., Rodriguez, J.J., Lamarque, S., Lemaire, V., Oliet, S.H., Piazza, P.V. & Abrous, D.N. (2007) Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol., 5, e214.
- Encinas, J.M., Vaahtokari, A. & Enikolopov, G. (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc. Natl. Acad. Sci. USA, 103, 8233–8238.
- Fabel, K. & Kempermann, G. (2008) Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromol. Med., 10, 59–66.
- Fernandez, S.P. & Gaspar, P. (2012) Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology, 62, 144–154.
- Hancock, A., Priester, C., Kidder, E. & Keith, J.R. (2009) Does 5-bromo-2'-deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo? Behav. Brain Res., 199, 218–221.
- Hendricks, T.J., Fyodorov, D.V., Wegman, L.J., Lelutiu, N.B., Pehek, E.A., Yamamoto, B., Silver, J., Weeber, E.J., Sweatt, J.D. & Deneris, E.S. (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron, 37, 233–247.
- Huang, G.J. & Herbert, J. (2005) The role of 5-HT1A receptors in the proliferation and survival of progenitor cells in the dentate gyrus of the adult hippocampus and their regulation by corticoids. Neuroscience, 135, 803–813.
- Jacobs, B.L. & Azmitia, E.C. (1992) Structure and function of the brain serotonin system. Physiol. Rev., 72, 165–229.
- Jha, S., Rajendran, R., Davda, J. & Vaidya, V.A. (2006) Selective serotonin depletion does not regulate hippocampal neurogenesis in the adult rat brain: differential effects of p-chlorophenylalanine and 5,7-dihydroxytryptamine. Brain Res., 1075, 48–59.
- Kempermann, G. (2011) Seven principles in the regulation of adult neurogenesis. Eur. J. Neurosci., 33, 1018–1024.
- Kiyasova, V., Fernandez, S.P., Laine, J., Stankovski, L., Muzerelle, A., Doly, S. & Gaspar, P. (2011) A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J. Neurosci., 31, 2756–2768.
- Klempin, F., Babu, H., De Pietri Tonelli, D., Alarcon, E., Fabel, K. & Kempermann, G. (2010) Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Front. Mol. Neurosci., 3, 14.
- Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M. & Alenina, N. (2013) Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci., 33, 8270–8275.
- Koehl, M. & Abrous, D.N. (2011) A new chapter in the field of memory: adult hippocampal neurogenesis. Eur. J. Neurosci., 33, 1101–1114.
- Malberg, J.E., Eisch, A.J., Nestler, E.J. & Duman, R.S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci., 20, 9104–9110.
- Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L., McHugh, T.J., Rodriguez Barrera, V., Chittajallu, R., Iwamoto, K.S., McBain, C.J., Fanselow, M.S. & Tonegawa, S. (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149, 188–201.
- Narboux-Neme, N., Pavone, L.M., Avallone, L., Zhuang, X. & Gaspar, P. (2008) Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology, 55, 994–1005.
- Narboux-Neme, N., Sagne, C., Doly, S., Diaz, S.L., Martin, C.B., Angenard, G., Martres, M.P., Giros, B., Hamon, M., Lanfumey, L., Gaspar, P. & Mongeau, R. (2011) Severe serotonin depletion after conditional deletion of the vesicular monoamine transporter 2 gene in serotonin neurons: neural and behavioral consequences. Neuropsychopharmacol., 36, 2538–2550.
- Narboux-Neme, N., Angenard, G., Mosienko, V., Klempin, F., Pitychoutis, P.M., Deneris, E., Bader, M., Giros, B., Alenina, N. & Gaspar, P. (2013) Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem. Neurosci., 4, 171–181.
- Persico, A.M., Baldi, A., Dell'Acqua, M.L., Moessner, R., Murphy, D.L., Lesch, K.P. & Keller, F. (2003) Reduced programmed cell death in brains of serotonin transporter knockout mice. NeuroReport, 14, 341–344.
- Petrik, D., Lagace, D.C. & Eisch, A.J. (2012) The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology, 62, 21–34.
- Pittenger, C. & Duman, R.S. (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacol., 33, 88–109.
- Popa, D., Cerdan, J., Repérant, C., Guiard, B.P., Guilloux, J.P., David, D.J. & Gardier, A.M. (2010) A longitudinal study of 5-HT outflow during chronic fluoxetine treatment using a new technique of chronic microdialysis in a highly emotional mouse strain. Eur. J. Pharmacol., 628, 83–90.
- van Praag, H., Kempermann, G. & Gage, F.H. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci., 2, 266–270.
- Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. (2008) Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS ONE, 3, e1997.
- Sahay, A., Scobie, K.N., Hill, A.S., O'Carroll, C.M., Kheirbek, M.A., Burghardt, N.S., Fenton, A.A., Dranovsky, A. & Hen, R. (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472, 466–470.
- Samuels, B.A. & Hen, R. (2011) Neurogenesis and affective disorders. Eur. J. Neurosci., 33, 1152–1159.
- Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C. & Hen, R. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–809.
- Sierra, A., Encinas, J.M., Deudero, J.J., Chancey, J.H., Enikolopov, G., Overstreet-Wadiche, L.S., Tsirka, S.E. & Maletic-Savatic, M. (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7, 483–495.
- Snyder, J.S., Choe, J.S., Clifford, M.A., Jeurling, S.I., Hurley, P., Brown, A., Kamhi, J.F. & Cameron, H.A. (2009) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J. Neurosci., 29, 14484–14495.
- Soumier, A., Banasr, M., Goff, L.K. & Daszuta, A. (2010) Region- and phase-dependent effects of 5-HT(1A) and 5-HT(2C) receptor activation on adult neurogenesis. Eur. Neuropsychopharm., 20, 336–345.
- Toni, N. & Sultan, S. (2011) Synapse formation on adult-born hippocampal neurons. Eur. J. Neurosci., 33, 1062–1068.
- Trowbridge, S., Narboux-Neme, N. & Gaspar, P. (2011) Genetic models of serotonin (5-HT) depletion: what do they tell us about the developmental role of 5-HT? Anat. Rec. (Hoboken), 294, 1615–1623.
- Vitalis, T., Cases, O., Passemard, S., Callebert, J. & Parnavelas, J.G. (2007) Embryonic depletion of serotonin affects cortical development. Eur. J. Neurosci., 26, 331–344.
- Wang, J.W., David, D.J., Monckton, J.E., Battaglia, F. & Hen, R. (2008) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J. Neurosci., 28, 1374–1384.
- Warner-Schmidt, J.L. & Duman, R.S. (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus, 16, 239–249.
- Wojtowicz, J.M. & Kee, N. (2006) BrdU assay for neurogenesis in rodents. Nat. Protoc., 1, 1399–1405.
- Zhao, Z.Q., Scott, M., Chiechio, S., Wang, J.S., Renner, K.J., Gereau, R.W. IV, Johnson, R.L., Deneris, E.S. & Chen, Z.F. (2006) Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci., 26, 12781–12788.
- Zhuang, X., Masson, J., Gingrich, J.A., Rayport, S. & Hen, R. (2005) Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J. Neurosci. Meth., 143, 27–32.