Role of mtDNA-related mitoepigenetic phenomena in cancer
André Ferreira
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Search for more papers by this authorTeresa L. Serafim
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Search for more papers by this authorVilma A. Sardão
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Search for more papers by this authorCorresponding Author
Teresa Cunha-Oliveira
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Correspondence to: Teresa Cunha-Oliveira, CNC, Center for Neuroscience and Cell Biology, UC Biotech Building (Lote 8A), Biocant Park, 3060-197, UC Biotech, Cantanhede, Portugal. Tel.: +351 231249170 (ext 714); fax: +351 231249179; e-mails: [email protected]; [email protected]Search for more papers by this authorAndré Ferreira
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Search for more papers by this authorTeresa L. Serafim
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Search for more papers by this authorVilma A. Sardão
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Search for more papers by this authorCorresponding Author
Teresa Cunha-Oliveira
CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
Correspondence to: Teresa Cunha-Oliveira, CNC, Center for Neuroscience and Cell Biology, UC Biotech Building (Lote 8A), Biocant Park, 3060-197, UC Biotech, Cantanhede, Portugal. Tel.: +351 231249170 (ext 714); fax: +351 231249179; e-mails: [email protected]; [email protected]Search for more papers by this authorAbstract
Background
Abnormal mitochondrial function has long been associated with the development and the progression of cancer. Multiple defects in the mitochondrial genome have been reported for various cancers, however the often disregarded mitochondrial epigenetic landscape provides an additional source of deregulation that may contribute to carcinogenesis.
Design
This article reviews the current understanding of mitochondrial epigenetics and how it may relate to cancer progression and development. Relevant studies were found through electronic databases (Web of Science and PubMed).
Results and conclusions
The remarkably unexplored field of mitochondrial epigenetics has the potential to shed light on several cancer-related mitochondrial abnormalities. More studies using innovative, genome-wide sequencing technologies are highly warranted to assess whether and how altered mtDNA methylation patterns affect cancer initiation and progression.
References
- 1Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta 2012; 1826: 238–54.
- 2Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene 2006; 25: 4647–62.
- 3Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer 2002; 1: 9.
- 4Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, et al. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci 2005; 1042: 109–22.
- 5Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 2005; 102: 719–24.
- 6Manev H, Dzitoyeva S. Progress in mitochondrial epigenetics. Biomol Concepts 2013; 4: 381–9.
- 7Bellizzi D, D'Aquila P, Giordano M, Montesanto A, Passarino G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 2012; 4: 17–27.
- 8Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010; 10: 12–31.
- 9Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 2011; 15: 551–89.
- 10Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007; 76: 679–99.
- 11Kanki T, Nakayama H, Sasaki N, Takio K, Alam TI, Hamasaki N, et al. Mitochondrial nucleoid and transcription factor A. Ann N Y Acad Sci 2004; 1011: 61–8.
- 12Ghosh S, Sengupta S, Scaria V. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion 2014 DOI :10.1016/j.mito.2014.07.007
- 13Cardon LR, Burge C, Clayton DA, Karlin S. Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci USA 1994; 91: 3799–803.
- 14Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M. Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 1984; 12: 4811–24.
- 15Bellizzi D, D'Aquila P, Scafone T, Giordano M, Riso V, Riccio A, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 2013; 20: 537–47.
- 16Hong EE, Okitsu CY, Smith AD, Hsieh CL. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol 2013; 33: 2683–90.
- 17Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 2011; 108: 3630–5.
- 18Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 2011; 31: 16619–36.
- 19Agrimi G, Di Noia MA, Marobbio CM, Fiermonte G, Lasorsa FM, Palmieri F. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochem J 2004; 379: 183–90.
- 20Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ. Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem Biol Interact 2006; 163: 113–32.
- 21Naviaux RK. Mitochondrial control of epigenetics. Cancer Biol Ther 2008; 7: 1191–3.
- 22Christensen KE, MacKenzie RE. Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals. BioEssays 2006; 28: 595–605.
- 23Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21: 5400–13.
- 24Infantino V, Castegna A, Iacobazzi F, Spera I, Scala I, Andria G, et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down's syndrome. Mol Genet Metab 2011; 102: 378–82.
- 25Levenson VV. DNA methylation as a universal biomarker. Expert Rev Mol Diagn 2010; 10: 481–8.
- 26Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 2013; 110: 25–34.
- 27Litonin D, Sologub M, Shi Y, Savkina M, Anikin M, Falkenberg M, et al. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 2010; 285: 18129–33.
- 28Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 1991; 7: 453–78.
- 29Montoya J, Gaines GL, Attardi G. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 1983; 34: 151–9.
- 30Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res 2009; 37: 6701–15.
- 31Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, Gadaleta MN, et al. The MTERF family proteins: mitochondrial transcription regulators and beyond. Biochim Biophys Acta 2009; 1787: 303–11.
- 32Martin M, Cho J, Cesare AJ, Griffith JD, Attardi G. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell 2005; 123: 1227–40.
- 33Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA 1982; 79: 7195–9.
- 34Wang Y, Leung FC. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004; 20: 1170–7.
- 35Copeland WC. Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 2012; 47: 64–74.
- 36Hixson JE, Wong TW, Clayton DA. Both the conserved stem-loop and divergent 5’-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem 1986; 261: 2384–90.
- 37Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 2013; 13: 577–91.
- 38Delsite R, Kachhap S, Anbazhagan R, Gabrielson E, Singh KK. Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol Cancer 2002; 1: 6.
- 39Cyr AR, Hitchler MJ, Domann FE. Regulation of SOD2 in cancer by histone modifications and CpG methylation: closing the loop between redox biology and epigenetics. Antioxid Redox Signal 2013; 18: 1946–55.
- 40Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, et al. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 2012; 3: 1220–35.
- 41Kolukula VK, Sahu G, Wellstein A, Rodriguez OC, Preet A, Iacobazzi V, et al. SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker. Oncotarget 2014; 5: 1212–25.
- 42Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 2013; 3: 648–57.
- 43Smolkova K, Jezek P. The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int J Cell Biol 2012; 2012: 273947.
- 44Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 2014; 124: 398–412.
- 45Xie CH, Naito A, Mizumachi T, Evans TT, Douglas MG, Cooney CA, et al. Mitochondrial regulation of cancer associated nuclear DNA methylation. Biochem Biophys Res Commun 2007; 364: 656–61.
- 46Murphy TM, Perry AS, Lawler M. The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr Relat Cancer 2008; 15: 11–25.
- 47Wen SL, Zhang F, Feng S. Decreased copy number of mitochondrial DNA: a potential diagnostic criterion for gastric cancer. Oncol Lett 2013; 6: 1098–102.
- 48Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 2012; 7: 326–34.
- 49Shen F, Huang W, Qi JH, Yuan BF, Huang JT, Zhou X, et al. Association of 5-methylcytosine and 5-hydroxymethylcytosine with mitochondrial DNA content and clinical and biochemical parameters in hepatocellular carcinoma. PLoS ONE 2013; 8: e76967.
- 50Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab 2014; 2: 10.
- 51Kowluru RA, Santos JM, Mishra M. Epigenetic modifications and diabetic retinopathy. Biomed Res Int 2013; 2013: 635284.
- 52Maekawa M, Taniguchi T, Higashi H, Sugimura H, Sugano K, Kanno T. Methylation of mitochondrial DNA is not a useful marker for cancer detection. Clin Chem 2004; 50: 1480–1.
- 53Sun C, Reimers LL, Burk RD. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 2011; 121: 59–63.
- 54Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358: 11148–59.
- 55DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.
- 56Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23: 147.
- 57Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999; 1410: 103–23.