Cardiac magnetic resonance imaging in the evaluation and management of mitral valve prolapse – a comprehensive review
Corresponding Author
Francesco Mangini MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Correspondence
Francesco Mangini, Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy.
Email: [email protected]
Search for more papers by this authorMaria Scarcia MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorRobert W. W. Biederman MD
Cardiology Department, Roper St Francis Healthcare, Charleston, South Carolina, USA
Search for more papers by this authorRoberto Calbi MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorFrancesco Spinelli MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorGrazia Casavecchia PhD
Cardiology Department, University of Foggia, Foggia, Italy
Search for more papers by this authorNatale Daniele Brunetti PhD
Cardiology Department, University of Foggia, Foggia, Italy
Search for more papers by this authorMatteo Gravina MD
Radiology Department, University of Foggia, Foggia, Italy
Search for more papers by this authorCorrado Fiore MD
Department of Cardiology, Citta di Lecce Hospital, Novoli (Lecce), Puglia, Italy
Search for more papers by this authorSergio Suma MD
Department of Cardiology, Azienda Ospedaliero Universitaria di Parma, Parma, Italy
Search for more papers by this authorMaria Milo MD
Department of Cardiology, Ospedale “Di Summa – Perrino,” ASL Br, Brindisi, Italy
Search for more papers by this authorCristiano Turchetti MD
Madonna della Bruna Outpatients Clinic, Matera, Italy
Search for more papers by this authorErnesto Pesce
Madonna della Bruna Outpatients Clinic, Matera, Italy
Search for more papers by this authorRemo Caramia MD
Department of Anesthesiology, Ospedale “Camberlingo,” ASL Br, Francavilla Fontana, Italy
Search for more papers by this authorFrancesca Lombardi MD
Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Milano, Lombardia, Italy
Search for more papers by this authorMassimo Grimaldi PhD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorCorresponding Author
Francesco Mangini MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Correspondence
Francesco Mangini, Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy.
Email: [email protected]
Search for more papers by this authorMaria Scarcia MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorRobert W. W. Biederman MD
Cardiology Department, Roper St Francis Healthcare, Charleston, South Carolina, USA
Search for more papers by this authorRoberto Calbi MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorFrancesco Spinelli MD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorGrazia Casavecchia PhD
Cardiology Department, University of Foggia, Foggia, Italy
Search for more papers by this authorNatale Daniele Brunetti PhD
Cardiology Department, University of Foggia, Foggia, Italy
Search for more papers by this authorMatteo Gravina MD
Radiology Department, University of Foggia, Foggia, Italy
Search for more papers by this authorCorrado Fiore MD
Department of Cardiology, Citta di Lecce Hospital, Novoli (Lecce), Puglia, Italy
Search for more papers by this authorSergio Suma MD
Department of Cardiology, Azienda Ospedaliero Universitaria di Parma, Parma, Italy
Search for more papers by this authorMaria Milo MD
Department of Cardiology, Ospedale “Di Summa – Perrino,” ASL Br, Brindisi, Italy
Search for more papers by this authorCristiano Turchetti MD
Madonna della Bruna Outpatients Clinic, Matera, Italy
Search for more papers by this authorErnesto Pesce
Madonna della Bruna Outpatients Clinic, Matera, Italy
Search for more papers by this authorRemo Caramia MD
Department of Anesthesiology, Ospedale “Camberlingo,” ASL Br, Francavilla Fontana, Italy
Search for more papers by this authorFrancesca Lombardi MD
Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Milano, Lombardia, Italy
Search for more papers by this authorMassimo Grimaldi PhD
Department of Cardiology, Ospedale Regionale “Miulli”, Acquaviva delle Fonti, BA, Italy
Search for more papers by this authorAbstract
Mitral valve prolapse is a common valve disorder that usually has a benign prognosis unless there is significant regurgitation or LV impairment. However, a subset of patients are at an increased risk of ventricular arrhythmias and sudden cardiac death, which has led to the recognition of “arrhythmic mitral valve prolapse” as a clinical entity. Emerging risk factors include mitral annular disjunction and myocardial fibrosis. While echocardiography remains the primary method of evaluation, cardiac magnetic resonance has become crucial in managing this condition. Cine magnetic resonance sequences provide accurate characterization of prolapse and annular disjunction, assessment of ventricular volumes and function, identification of early dysfunction and remodeling, and quantitative assessment of mitral regurgitation when integrated with flow imaging. However, the unique strength of magnetic resonance lies in its ability to identify tissue changes. T1 mapping sequences identify diffuse fibrosis, in turn related to early ventricular dysfunction and remodeling. Late gadolinium enhancement sequences detect replacement fibrosis, an independent risk factor for ventricular arrhythmias and sudden cardiac death. There are consensus documents and reviews on the use of cardiac magnetic resonance specifically in arrhythmic mitral valve prolapse. However, in this article, we propose an algorithm for the broader use of cardiac magnetic resonance in managing this condition in various scenarios. Future advancements may involve implementing techniques for tissue characterization and flow analysis, such as 4D flow imaging, to identify patients with ventricular dysfunction and remodeling, increased arrhythmic risk, and more accurate grading of mitral regurgitation, ultimately benefiting patient selection for surgical therapy.
REFERENCES
- 1Freed LA, Levy D, Levine RA, et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med. 1999; 341(1): 1-7. doi:10.1056/NEJM199907013410101
- 2Flack JM, Kvasnicka JH, Gardin JM, Gidding SS, Manolio TA. Anthropometric and physiologic correlates of mitral valve prolapse in a biethnic cohort of young adults: the CARDIA study. Am Heart J. 1999; 138(3 Pt 1): 486-492. doi:10.1016/s0002-8703(99)70151-1
- 3Theal M, Sleik K, Anand S, Yi Q, Yusuf S, Lonn E. Prevalence of mitral valve prolapse in ethnic groups. Can J Cardiol. 2004; 20(5): 511-515.
- 4Adams DH, Rosenhek R, Falk V. Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J. 2010; 31(16): 1958-1966. doi:10.1093/eurheartj/ehq222
- 5Le Tourneau T, Mérot J, Rimbert A, et al. Genetics of syndromic and non-syndromic mitral valve prolapse. Heart. 2018; 104(12): 978-984. doi:10.1136/heartjnl-2017-312420
- 6Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease [published correction appears in Eur Heart J. 2022 Feb 18;:]. Eur Heart J. 2022; 43(7): 561-632. doi:10.1093/eurheartj/ehab395
- 7Hayek E, Gring CN, Griffin BP. Mitral valve prolapse. Lancet. 2005; 365(9458): 507-518. doi:10.1016/S0140-6736(05)17869-6
- 8Delling FN, Rong J, Larson MG, et al. Familial clustering of mitral valve prolapse in the community. Circulation. 2015; 131(3): 263-268. doi:10.1161/CIRCULATIONAHA.114.012594
- 9Strahan NV, Murphy EA, Fortuin NJ, Come PC, Humphries JO. Inheritance of the mitral valve prolapse syndrome. Discussion of a three-dimensional penetrance model. Am J Med. 1983; 74(6): 967-972. doi:10.1016/0002-9343(83)90791-x
- 10Levine RA, Stathogiannis E, Newell JB, Harrigan P, Weyman AE. Reconsideration of echocardiographic standards for mitral valve prolapse: lack of association between leaflet displacement isolated to the apical four chamber view and independent echocardiographic evidence of abnormality. J Am Coll Cardiol. 1988; 11(5): 1010-1019. doi:10.1016/s0735-1097(98)90059-6
- 11Fulton BL, Liang JJ, Enriquez A, et al. Imaging characteristics of papillary muscle site of origin of ventricular arrhythmias in patients with mitral valve prolapse. J Cardiovasc Electrophysiol. 2018; 29(1): 146-153. doi:10.1111/jce.13374
- 12Han Y, Peters DC, Salton CJ, et al. Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC Cardiovasc Imaging. 2008; 1(3): 294-303. doi:10.1016/j.jcmg.2008.01.013
- 13Vermes E, Altes A, Iacuzio L, et al. The evolving role of cardiovascular magnetic resonance in the assessment of mitral valve prolapse. Front Cardiovasc Med. 2023; 10:1093060. doi:10.3389/fcvm.2023.1093060 Published 2023 Mar 3
- 14Carabello BA. Sudden death in mitral regurgitation: why was I so surprised? J Am Coll Cardiol. 1999; 34(7): 2086-2087. doi:10.1016/s0735-1097(99)00475-1
- 15Basso C, Perazzolo Marra M, Rizzo S, et al. Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation. 2015; 132(7): 556-566. doi:10.1161/CIRCULATIONAHA.115.016291
- 16Han HC, Ha FJ, Teh AW, et al. Mitral valve prolapse and sudden cardiac death: a systematic review. J Am Heart Assoc. 2018; 7(23):e010584. doi:10.1161/JAHA.118.010584
- 17Sabbag A, Essayagh B, Barrera JDR, et al. EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on valvular heart disease and the European Association of Cardiovascular Imaging endorsed cby the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American Heart Rhythm Society. Europace. 2022; 24(12): 1981-2003. doi:10.1093/europace/euac125
- 18Garg P, Swift AJ, Zhong L, et al. Assessment of mitral valve regurgitation by cardiovascular magnetic resonance imaging. Nat Rev Cardiol. 2020; 17(5): 298-312. doi:10.1038/s41569-019-0305-z
- 19Guglielmo M, Fusini L, Muscogiuri G, et al. T1 mapping and cardiac magnetic resonance feature tracking in mitral valve prolapse. Eur Radiol. 2021; 31(2): 1100-1109. doi:10.1007/s00330-020-07140-w
- 20Romero Daza A, Chokshi A, Pardo P, et al. Mitral valve prolapse morphofunctional features by cardiovascular magnetic resonance: more than just a valvular disease. J Cardiovasc Magn Reson. 2021; 23(1): 107. doi:10.1186/s12968-021-00800-w Published 2021 Oct 11
- 21Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: a Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [published correction appears in Circulation. 2021 Feb 2;143(5):e229] [published correction appears in Circulation. 2023 Aug 22;148(8):e8] [published correction appears in Circulation. 2023 Nov 14;148(20):e185]. Circulation. 2021; 143(5): e72-e227. doi:10.1161/CIR.0000000000000923
- 22Musella F, Azzu A, Antonopoulos AS, La Mura L, Mohiaddin RH. Comprehensive mitral valve prolapse assessment by cardiovascular MRI. Clin Radiol. 2022; 77(2): e120-e129. doi:10.1016/j.crad.2021.11.004
- 23Ozgun M, Hoffmeier A, Kouwenhoven M, et al. Comparison of 3D segmented gradient-echo and steady-state free precession coronary MRI sequences in patients with coronary artery disease. AJR Am J Roentgenol. 2005; 185(1): 103-109. doi:10.2214/ajr.185.1.01850103
- 24Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU. Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging. 2001; 14(3): 230-236. doi:10.1002/jmri.1178
- 25Bloomer TN, Plein S, Radjenovic A, et al. Cine MRI using steady state free precession in the radial long axis orientation is a fast accurate method for obtaining volumetric data of the left ventricle. J Magn Reson Imaging. 2001; 14(6): 685-692. doi:10.1002/jmri.10019
- 26Sechtem U, Pflugfelder PW, White RD, et al. Cine MR imaging: potential for the evaluation of cardiovascular function. AJR Am J Roentgenol. 1987; 148(2): 239-246. doi:10.2214/ajr.148.2.239
- 27Kozerke S, Schwitter J, Pedersen EM, Boesiger P. Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging. 2001; 14(2): 106-112. doi:10.1002/jmri.1159
- 28Chan KM, Wage R, Symmonds K, et al. Towards comprehensive assessment of mitral regurgitation using cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008; 10(1): 61. doi:10.1186/1532-429X-10-61 Published 2008 Dec 22
- 29Higgins CB, Holt W, Pflugfelder P, Sechtem U. Functional evaluation of the heart with magnetic resonance imaging. Magn Reson Med. 1988; 6(2): 121-139. doi:10.1002/mrm.1910060202
- 30Nassenstein K, Orzada S, Haering L, et al. Cardiac MRI: evaluation of phonocardiogram-gated cine imaging for the assessment of global und regional left ventricular function in clinical routine. Eur Radiol. 2012; 22(3): 559-568. doi:10.1007/s00330-011-2279-z
- 31Epstein FH. MRI of left ventricular function. J Nucl Cardiol. 2007; 14(5): 729-744. doi:10.1016/j.nuclcard.2007.07.006
- 32Ruijsink B, Puyol-Antón E, Oksuz I, et al. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC Cardiovasc Imaging. 2020; 13(3): 684-695. doi:10.1016/j.jcmg.2019.05.030
- 33Kudelka AM, Turner DA, Liebson PR, Macioch JE, Wang JZ, Barron JT. Comparison of cine magnetic resonance imaging and Doppler echocardiography for evaluation of left ventricular diastolic function. Am J Cardiol. 1997; 80(3): 384-386. doi:10.1016/s0002-9149(97)00375-5
- 34Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020; 22(1): 17. doi:10.1186/s12968-020-00607-1 Published 2020 Feb 24
- 35Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) [published correction appears in J Cardiovasc Magn Reson. 2018 Feb 7;20(1):9]. J Cardiovasc Magn Reson. 2017; 19(1): 75. doi:10.1186/s12968-017-0389-8 Published 2017 Oct 9
- 36Puntmann VO, Peker E, Chandrashekhar Y, Nagel E. T1 mapping in characterizing myocardial disease: a comprehensive review. Circ Res. 2016; 119(2): 277-299. doi:10.1161/CIRCRESAHA.116.307974
- 37Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016; 9(1): 67-81. doi:10.1016/j.jcmg.2015.11.005
- 38Ascione R, De Giorgi M, Dell'Aversana S, et al. The additional value of T1 mapping in cardiac disease: state of the art. Curr Cardiovasc Imaging Rep. 2024; 17: 1-19. doi:10.1007/s12410-023-09588-y
10.1007/s12410-023-09588-y Google Scholar
- 39Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004; 52(1): 141-146. doi:10.1002/mrm.20110
- 40Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010; 12(1): 69. doi:10.1186/1532-429X-12-69 Published 2010 Nov 19
- 41Treibel TA, Fontana M, Maestrini V, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016; 9(1): 54-63. doi:10.1016/j.jcmg.2015.11.008
- 42Cummings KW, Bhalla S, Javidan-Nejad C, Bierhals AJ, Gutierrez FR, Woodard PK. A pattern-based approach to assessment of delayed enhancement in nonischemic cardiomyopathy at MR imaging. Radiographics. 2009; 29(1): 89-103. doi:10.1148/rg.291085052
- 43Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I—analytical validation and clinical qualification. J Cardiovasc Magn Reson. 2018; 20(1): 67. doi:10.1186/s12968-018-0484-5 Published 2018 Sep 20
- 44Hundley WG, Bluemke DA, et al.; American College of Cardiology Foundation Task Force on Expert Consensus Documents. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010; 55(23): 2614-2662. doi:10.1016/j.jacc.2009.11.011
- 45Kellman P, Arai AE. Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging. 2012; 36(3): 529-542. doi:10.1002/jmri.23605
- 46Ibanez B, Aletras AH, Arai AE, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: jACC Scientific Expert Panel. J Am Coll Cardiol. 2019; 74(2): 238-256. doi:10.1016/j.jacc.2019.05.024
- 47Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med. 2002; 47(2): 372-383. doi:10.1002/mrm.10051
- 48Weingärtner S, Akçakaya M, Roujol S, et al. Free-breathing combined three-dimensional phase sensitive late gadolinium enhancement and T1 mapping for myocardial tissue characterization. Magn Reson Med. 2015; 74(4): 1032-1041. doi:10.1002/mrm.25495
- 49Mantilla J, Paredes JL, Bellanger J, et al. Detection of fibrosis in late gadolinium enhancement cardiac MRI using kernel dictionary learning-based clustering. 2015 Computing in Cardiology Conference (CinC), 2015: 357-360. doi:10.1109/CIC.2015.7408660
10.1109/CIC.2015.7408660 Google Scholar
- 50Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update : society for Cardiovascular Magnetic Resonance (SCMR): board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson. 2020; 22(1): 19. doi:10.1186/s12968-020-00610-6 Published
- 51 SCMR Board of Trustees. Clinical practice of cardiovascular magnetic resonance: position statement of the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson. 2019; 21(1): 78. Published 2019 Dec 23. doi:10.1186/s12968-019-0592-x
- 52Hundley WG, Bluemke DA, Bogaert J, et al. Society for Cardiovascular Magnetic Resonance (SCMR) guidelines for reporting cardiovascular magnetic resonance examinations. J Cardiovasc Magn Reson. 2022; 24(1): 29. doi:10.1186/s12968-021-00827-z Published 2022 Apr 28
- 53Vermes E, Iacuzio L, Levy F, et al. Role of cardiovascular magnetic resonance in native valvular regurgitation: a comprehensive review of protocols, grading of severity, and prediction of valve surgery. Front Cardiovasc Med. 2022; 9:881141. doi:10.3389/fcvm.2022.881141 Published 2022 Jul 7
- 54Simpson IA, Maciel BC, Moises V, et al. Cine magnetic resonance imaging and color Doppler flow mapping displays of flow velocity, spatial acceleration, and jet formation: a comparative in vitro study. Am Heart J. 1993; 126(5): 1165-1174. doi:10.1016/0002-8703(93)90670-5
- 55Uretsky S, Argulian E, Narula J, Wolff SD. Use of cardiac magnetic resonance imaging in assessing mitral regurgitation: current evidence. J Am Coll Cardiol. 2018; 71(5): 547-563. doi:10.1016/j.jacc.2017.12.009
- 56Ricci F, Aung N, Gallina S, et al. Cardiovascular magnetic resonance reference values of mitral and tricuspid annular dimensions: the UK Biobank cohort. J Cardiovasc Magn Reson. 2020; 23(1): 5. doi:10.1186/s12968-020-00688-y Published 2020 Dec 17
- 57Essayagh B, Iacuzio L, Civaia F, Avierinos JF, Tribouilloy C, Levy F. Usefulness of 3-Tesla cardiac magnetic resonance to detect mitral annular disjunction in patients with mitral valve prolapse. Am J Cardiol. 2019; 124(11): 1725-1730. doi:10.1016/j.amjcard.2019.08.047
- 58Lee AP, Jin CN, Fan Y, Wong RHL, Underwood MJ, Wan S. Functional implication of mitral annular disjunction in mitral valve prolapse: a quantitative dynamic 3D echocardiographic Study. JACC Cardiovasc Imaging. 2017; 10(12): 1424-1433. doi:10.1016/j.jcmg.2016.11.022
- 59Anwar AM, Soliman OI, ten Cate FJ, et al. True mitral annulus diameter is underestimated by two-dimensional echocardiography as evidenced by real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2007; 23(5): 541-547. doi:10.1007/s10554-006-9181-9
- 60Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation. 2014; 129(21): 2158-2170. doi:10.1161/CIRCULATIONAHA.113.006702
- 61Pistelli L, Vetta G, Parlavecchio A, et al. Arrhythmic risk profile in mitral valve prolapse: a systematic review and metanalysis of 1715 patients. J Cardiovasc Electrophysiol. 2024; 35(2): 290-300. doi:10.1111/jce.16149
- 62Basso C, Iliceto S, Thiene G, Perazzolo Marra M. Mitral valve prolapse, ventricular arrhythmias, and sudden death. Circulation. 2019; 140(11): 952-964. doi:10.1161/CIRCULATIONAHA.118.034075
- 63Delling FN, Aung S, Vittinghoff E, et al. Antemortem and post-mortem characteristics of lethal mitral valve prolapse among all countywide sudden deaths. JACC Clin Electrophysiol. 2021; 7(8): 1025-1034. doi:10.1016/j.jacep.2021.01.007
- 64Kubala M, Essayagh B, Michelena HI, Enriquez-Sarano M, Tribouilloy C. Arrhythmic mitral valve prolapse in 2023: evidence-based update. Front Cardiovasc Med. 2023; 10:1130174. doi:10.3389/fcvm.2023.1130174 Published 2023 Apr 18
- 65Essayagh B, Sabbag A, Antoine C, et al. Presentation and outcome of arrhythmic mitral valve prolapse. J Am Coll Cardiol. 2020; 76(6): 637-649. doi:10.1016/j.jacc.2020.06.029
- 66Nishimura RA, McGoon MD, Shub C, Miller FA Jr, Ilstrup DM, Tajik AJ. Echocardiographically documented mitral-valve prolapse. Long-term follow-up of 237 patients. N Engl J Med. 1985; 313(21): 1305-1309. doi:10.1056/NEJM198511213132101
- 67Buckert D, Dewes P, Walcher T, Rottbauer W, Bernhardt P. Intermediate-term prognostic value of reversible perfusion deficit diagnosed by adenosine CMR: a prospective follow-up study in a consecutive patient population. JACC Cardiovasc Imaging. 2013; 6(1): 56-63. doi:10.1016/j.jcmg.2012.08.011
- 68Perazzolo Marra M, Cecere A, Cipriani A, et al. Determinants of ventricular arrhythmias in mitral valve prolapse. JACC Clin Electrophysiol. doi:10.1016/j.jacep.2023.12.007 Published online January 18, 2024
10.1016/j.jacep.2023.12.007 Google Scholar
- 69Constant Dit Beaufils AL, Huttin O, Jobbe-Duval A, et al. Replacement myocardial fibrosis in patients with mitral valve prolapse: relation to mitral regurgitation, ventricular remodeling, and arrhythmia. Circulation. 2021; 143(18): 1763-1774. doi:10.1161/CIRCULATIONAHA.120.050214
- 70Pennell DJ. Ventricular volume and mass by CMR. J Cardiovasc Magn Reson. 2002; 4(4): 507-513. doi:10.1081/jcmr-120016389
- 71Couto M, Souto M, Martínez A, et al. Accuracy of right ventricular volume and function assessed with cardiovascular magnetic resonance: comparison with echocardiographic parameters. Clin Imaging. 2020; 59(1): 61-67. doi:10.1016/j.clinimag.2019.10.002
- 72Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002; 90(1): 29-34. doi:10.1016/s0002-9149(02)02381-0
- 73Delling FN, Rong J, Larson MG, et al. Evolution of mitral valve prolapse: insights from the Framingham Heart Study. Circulation. 2016; 133(17): 1688-1695. doi:10.1161/CIRCULATIONAHA.115.020621
- 74Tribouilloy C, Rusinaru D, Szymanski C, et al. Predicting left ventricular dysfunction after valve repair for mitral regurgitation due to leaflet prolapse: additive value of left ventricular end-systolic dimension to ejection fraction. Eur J Echocardiogr. 2011; 12(9): 702-710. doi:10.1093/ejechocard/jer128
- 75Enriquez-Sarano M, Tajik AJ, Schaff HV, Orszulak TA, Bailey KR, Frye RL. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. Circulation. 1994; 90(2): 830-837. doi:10.1161/01.cir.90.2.830
- 76Timmis SB, Kirsh MM, Montgomery DG, Starling MR. Evaluation of left ventricular ejection fraction as a measure of pump performance in patients with chronic mitral regurgitation. Catheter Cardiovasc Interv. 2000; 49(3): 290-296. doi:10.1002/(sici)1522-726x(200003)49:3C;290::aid-ccd143E;3.0.co;2-c
10.1002/(SICI)1522-726X(200003)49:3<290::AID-CCD14>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 77Zito C, Carerj S, Todaro MC, et al. Myocardial deformation and rotational profiles in mitral valve prolapse. Am J Cardiol. 2013; 112(7): 984-990. doi:10.1016/j.amjcard.2013.05.031
- 78Bui AH, Roujol S, Foppa M, et al. Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart. 2017; 103(3): 204-209. doi:10.1136/heartjnl-2016-309303
- 79Yang LT, Ahn SW, Li Z, et al. Mitral valve prolapse patients with less than moderate mitral regurgitation exhibit early cardiac chamber remodeling. J Am Soc Echocardiogr. 2020; 33(7): 815-825.e2. doi:10.1016/j.echo.2020.01.016
- 80Levy F, Iacuzio L, Marechaux S, et al. Influence of prolapse volume in mitral valve prolapse. Am J Cardiol. 2021; 157: 64-70. doi:10.1016/j.amjcard.2021.07.019
- 81Li R, Assadi H, Matthews G, et al. The importance of mitral valve prolapse doming volume in the assessment of left ventricular stroke volume with cardiac MRI. Med Sci (Basel). 2023; 11(1): 13. doi:10.3390/medsci11010013 Published 2023 Jan 24
- 82El-Tallawi KC, Kitkungvan D, Xu J, et al. Resolving the disproportionate left ventricular enlargement in mitral valve prolapse due to Barlow disease: insights from cardiovascular magnetic resonance. JACC Cardiovasc Imaging. 2021; 14(3): 573-584. doi:10.1016/j.jcmg.2020.08.029
- 83Tanaka K, Ohtaki E, Matsumura T, et al. Impact of a preoperative mitral regurgitation scoring system on outcome of surgical repair for mitral valve prolapse. Am J Cardiol. 2003; 92(11): 1306-1309. doi:10.1016/j.amjcard.2003.08.012
- 84Avierinos JF, Detaint D, Messika-Zeitoun D, Mohty D, Enriquez-Sarano M. Risk, determinants, and outcome implications of progression of mitral regurgitation after diagnosis of mitral valve prolapse in a single community. Am J Cardiol. 2008; 101(5): 662-667. doi:10.1016/j.amjcard.2007.10.029
- 85Altes A, Levy F, Iacuzio L, et al. Comparison of mitral regurgitant volume assessment between proximal flow convergence and volumetric methods in patients with significant primary mitral regurgitation: an echocardiographic and cardiac magnetic resonance imaging study. J Am Soc Echocardiogr. 2022; 35(7): 671-681. doi:10.1016/j.echo.2022.03.005
- 86Baessato F, Fusini L, Muratori M, et al. Echocardiography vs. CMR in the quantification of chronic mitral regurgitation: a happy marriage or stormy divorce? J Cardiovasc Dev Dis. 2023; 10(4): 150. doi:10.3390/jcdd10040150 Published 2023 Mar 31
- 87Wolff R, Uretsky S. Defining the left ventricular base in mitral valve prolapse: impact on systolic function and regurgitation. Int J Cardiovasc Imaging. 2020; 36(11): 2221-2227. doi:10.1007/s10554-020-01927-0
- 88Bissell MM, Raimondi F, Ait Ali L, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J Cardiovasc Magn Reson. 2023; 25(1): 40. doi:10.1186/s12968-023-00942-z Published 2023 Jul 20
- 89Yang LT, Liu YW, Shih JY, et al. Predictive value of left atrial deformation on prognosis in severe primary mitral regurgitation. J Am Soc Echocardiogr. 2015; 28(11): 1309-1317.e4. doi:10.1016/j.echo.2015.07.004
- 90Westenberg JJ, Roes SD, Ajmone Marsan N, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008; 249(3): 792-800. doi:10.1148/radiol.2492080146
- 91Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015; 17(1): 72. doi:10.1186/s12968-015-0174-5 Published 2015 Aug 10
- 92Roes SD, Hammer S, van der Geest RJ, et al. Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol. 2009; 44(10): 669-675. doi:10.1097/RLI.0b013e3181ae99b5
- 93Calkoen EE, Roest AA, Kroft LJ, et al. Characterization and improved quantification of left ventricular inflow using streamline visualization with 4DFlow MRI in healthy controls and patients after atrioventricular septal defect correction. J Magn Reson Imaging. 2015; 41(6): 1512-1520. doi:10.1002/jmri.24735
- 94Fidock B, Archer G, Barker N, et al. Standard and emerging CMR methods for mitral regurgitation quantification. Int J Cardiol. 2021; 331: 316-321. doi:10.1016/j.ijcard.2021.01.066
- 95Spampinato RA, Jahnke C, Crelier G, et al. Quantification of regurgitation in mitral valve prolapse with four-dimensional flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2021; 23(1): 87. doi:10.1186/s12968-021-00783-8 Published 2021 Jul 8
- 96Penicka M, Vecera J, Mirica DC, Kotrc M, Kockova R, Van Camp G. Prognostic implications of magnetic resonance-derived quantification in asymptomatic patients with organic mitral regurgitation: comparison with Doppler echocardiography-derived integrative approach. Circulation. 2018; 137(13): 1349-1360. doi:10.1161/CIRCULATIONAHA.117.029332
- 97Myerson SG, d'Arcy J, Christiansen JP, et al. Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification. Circulation. 2016; 133(23): 2287-2296. doi:10.1161/CIRCULATIONAHA.115.017888
- 98Uretsky S, Gillam L, Lang R, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015; 65(11): 1078-1088. doi:10.1016/j.jacc.2014.12.047
- 99Gelfand EV, Hughes S, Hauser TH, et al. Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography. J Cardiovasc Magn Reson. 2006; 8(3): 503-507. doi:10.1080/10976640600604856
- 100Le Goffic C, Toledano M, Ennezat PV, et al. Quantitative evaluation of mitral regurgitation secondary to mitral valve prolapse by magnetic resonance imaging and echocardiography. Am J Cardiol. 2015; 116(9): 1405-1410. doi:10.1016/j.amjcard.2015.07.064
- 101Polte CL, Gao SA, Johnsson ÅA, Lagerstrand KM. Bech-Hanssen O. Characterization of chronic aortic and mitral regurgitation undergoing valve surgery using cardiovascular magnetic resonance. Am J Cardiol. 2017; 119(12): 2061-2068. doi:10.1016/j.amjcard.2017.03.041
- 102Ribeyrolles S, Monin JL, Rohnean A, et al. Grading mitral regurgitation using 4D flow CMR: comparison to transthoracic echocardiography. Echocardiography. 2022; 39(6): 783-793. doi:10.1111/echo.15364
- 103Le Tourneau T, Messika-Zeitoun D, Russo A, et al. Impact of left atrial volume on clinical outcome in organic mitral regurgitation. J Am Coll Cardiol. 2010; 56(7): 570-578. doi:10.1016/j.jacc.2010.02.059
- 104Thomas MJ, Bach DS. Mitral valve prolapse with left atrial enlargement out of proportion to mitral regurgitation. J Heart Valve Dis. 2012; 21(4): 413-415.
- 105Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update [published correction appears in J Cardiovasc Magn Reson. 2021 Oct 18;23(1):114]. J Cardiovasc Magn Reson. 2020; 22(1): 87. doi:10.1186/s12968-020-00683-3 Published 2020 Dec 14
- 106Faletra FF, Leo LA, Paiocchi VL, et al. Anatomy of mitral annulus insights from non-invasive imaging techniques. Eur Heart J Cardiovasc Imaging. 2019; 20(8): 843-857. doi:10.1093/ehjci/jez153
- 107Gulati V, Hu R, et al. Mitral annular disjunction: review of an increasingly recognized mitral valve entity. Radiol Cardiothorac Imaging. 2023; 5(6):e230131. doi:10.1148/ryct.230131
- 108Carmo P, Andrade MJ, Aguiar C, Rodrigues R, Gouveia R, Silva JA. Mitral annular disjunction in myxomatous mitral valve disease: a relevant abnormality recognizable by transthoracic echocardiography. Cardiovasc Ultrasound. 2010; 8: 53. doi:10.1186/1476-7120-8-53 Published 2010 Dec 9
- 109Mantegazza V, Volpato V, Gripari P, et al. Multimodality imaging assessment of mitral annular disjunction in mitral valve prolapse. Heart. 2021; 107(1): 25-32. doi:10.1136/heartjnl-2020-317330
- 110Konda T, Tani T, Suganuma N, et al. The analysis of mitral annular disjunction detected by echocardiography and comparison with previously reported pathological data. J Echocardiogr. 2017; 15(4): 176-185. doi:10.1007/s12574-017-0349-1
- 111Eriksson MJ, Bitkover CY, Omran AS, et al. Mitral annular disjunction in advanced myxomatous mitral valve disease: echocardiographic detection and surgical correction. J Am Soc Echocardiogr. 2005; 18(10): 1014-1022. doi:10.1016/j.echo.2005.06.013
- 112Essayagh B, Sabbag A, Antoine C, et al. The mitral annular disjunction of mitral valve prolapse: presentation and outcome. JACC Cardiovasc Imaging. 2021; 14(11): 2073-2087. doi:10.1016/j.jcmg.2021.04.029
- 113Perazzolo Marra M, Basso C, De Lazzari M, et al. Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ Cardiovasc Imaging. 2016; 9(8):e005030. doi:10.1161/CIRCIMAGING.116.005030
- 114Mangini F, Muscogiuri E, Del Villano R, et al. Tricuspid annular disjunction can be isolated and even arrhythmogenic. A cardiac magnetic resonance study. Arch Clin Cases. 2022; 9(2): 41-49. doi:10.22551/2022.35.0902.10202 Published 2022 Jul 7
- 115Verheul LM, Guglielmo M, Groeneveld SA, et al. Mitral annular disjunction in idiopathic ventricular fibrillation patients: just a bystander or a potential cause? Eur Heart J Cardiovasc Imaging. doi:10.1093/ehjci/jeae054 Published online February 27, 2024
10.1093/ehjci/jeae054 Google Scholar
- 116Figliozzi S, Georgiopoulos G, Aquaro GD, et al. Late gadolinium enhancement predicts adverse clinical outcome in patients with mitral valve prolapse/mitral annulus disjunction. 2021:jeab090.048. doi:10.1093/ehjci/jeab090.048
10.1093/ehjci/jeab090.048 Google Scholar
- 117Dejgaard LA, Skjølsvik ET, Lie ØH, et al. The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol. 2018; 72(14): 1600-1609. doi:10.1016/j.jacc.2018.07.070
- 118Hussain N, Bhagia G, Doyle M, Rayarao G, Williams RB, Biederman RWW. Mitral annular disjunction; how accurate are we? A cardiovascular MRI study defining risk. Int J Cardiol Heart Vasc. 2023; 49:101298. doi:10.1016/j.ijcha.2023.101298. Published 2023 Nov 9.
- 119Wu S, Siegel RJ. Mitral annular disjunction: a case series and review of the literature. Front Cardiovasc Med. 2022; 9:976066. doi:10.3389/fcvm.2022.976066. Published 2022 Aug 12.
- 120Kulkarni AA, Chudgar PD, Burkule NJ, Kamat NV. Mitral annulus disjunction and arrhythmic mitral valve prolapse: emerging role of cardiac magnetic resonance imaging in the workup. Indian J Radiol Imaging. 2022; 32(4): 576-581. doi:10.1055/s-0042-1754357. Published 2022 Aug 30.
- 121Lee SP, Ashley EA, Homburger J, et al. Incident atrial fibrillation is associated with MYH7 sarcomeric gene variation in hypertrophic cardiomyopathy. Circ Heart Fail. 2018; 11(9):e005191. doi:10.1161/CIRCHEARTFAILURE.118.005191
- 122Zia MI, Valenti V, Cherston C, Criscito M, Uretsky S, Wolff S. Relation of mitral valve prolapse to basal left ventricular hypertrophy as determined by cardiac magnetic resonance imaging. Am J Cardiol. 2012; 109(9): 1321-1325. doi:10.1016/j.amjcard.2011.12.029
- 123Patel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2017; 10(10 Pt A): 1180-1193. doi:10.1016/j.jcmg.2017.08.005
- 124Garbi M, Lancellotti P, Sheppard MN. Mitral valve and left ventricular features in malignant mitral valve prolapse. Open Heart. 2018; 5(2):e000925. doi:10.1136/openhrt-2018-000925 Published 2018 Oct 15
- 125Basso C, Perazzolo Marra M. Mitral annulus disjunction: emerging role of myocardial mechanical stretch in arrhythmogenesis. J Am Coll Cardiol. 2018; 72(14): 1610-1612. doi:10.1016/j.jacc.2018.07.069
- 126Park MH, van Kampen A, Melnitchouk S, et al. Native and post-repair residual mitral valve prolapse increases forces exerted on the papillary muscles: a possible mechanism for localized fibrosis? Circ Cardiovasc Interv. 2022; 15(12):e011928. doi:10.1161/CIRCINTERVENTIONS.122.011928
- 127Dieterlen MT, Klaeske K, Spampinato R, et al. Histopathological insights into mitral valve prolapse-induced fibrosis. Front Cardiovasc Med. 2023; 10:1057986. doi:10.3389/fcvm.2023.1057986 Published 2023 Mar 7
- 128Morningstar JE, Gensemer C, Moore R, et al. Mitral valve prolapse induces regionalized myocardial fibrosis. J Am Heart Assoc. 2021; 10(24):e022332. doi:10.1161/JAHA.121.022332
- 129Kitkungvan D, Nabi F, Kim RJ, et al. Myocardial fibrosis in patients with primary mitral regurgitation with and without prolapse. J Am Coll Cardiol. 2018; 72(8): 823-834. doi:10.1016/j.jacc.2018.06.048
- 130Figliozzi S, Georgiopoulos G, Lopes PM, et al. Myocardial fibrosis at cardiac MRI helps predict adverse clinical outcome in patients with mitral valve prolapse. Radiology. 2023; 306(1): 112-121. doi:10.1148/radiol.220454
- 131Tastet L, Dixit S, Nguyen T, et al. Interstitial fibrosis and arrhythmic mitral valve prolapse: unravelling sex-based differences. Preprint. medRxiv. 2024;2024.01.12.24301217. Published 2024 Jan 13. doi:10.1101/2024.01.12.24301217
10.1101/2024.01.12.24301217 Google Scholar
- 132Fluechter S, Kuschyk J, Wolpert C, et al. Extent of late gadolinium enhancement detected by cardiovascular magnetic resonance correlates with the inducibility of ventricular tachyarrhythmia in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2010; 12(1): 30. doi:10.1186/1532-429X-12-30 Published 2010 May 21
- 133Moravsky G, Ofek E, Rakowski H, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging. 2013; 6(5): 587-596. doi:10.1016/j.jcmg.2012.09.018
- 134Perazzolo Marra M, De Lazzari M, Zorzi A, et al. Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy. Heart Rhythm. 2014; 11(5): 856-863. doi:10.1016/j.hrthm.2014.01.014
- 135Segura-Rodríguez D, Bermúdez-Jiménez FJ, Carriel V, et al. Myocardial fibrosis in arrhythmogenic cardiomyopathy: a genotype-phenotype correlation study. Eur Heart J Cardiovasc Imaging. 2020; 21(4): 378-386. doi:10.1093/ehjci/jez277
- 136Van De Heyning CM, Holtackers RJ, Nazir MS, et al. Dark-blood late gadolinium enhancement CMR improves detection of papillary muscle fibrosis in patients with mitral valve prolapse. Eur J Radiol. 2022; 147:110118. doi:10.1016/j.ejrad.2021.110118
- 137Lim SJ, Koo HJ, Cho MS, Nam GB, Kang JW, Yang DH. Late gadolinium enhancement of left ventricular papillary muscles in patients with mitral regurgitation. Korean J Radiol. 2021; 22(10): 1609-1618. doi:10.3348/kjr.2020.1485
- 138Bogabathina H, Doyle M, Williams R, Yamrozik J, Vido D, Biederman RW. Is there an alternative explanation to post-myocardial infarction emergence of mitral regurgitation? A CMR-LGE observational study. J Heart Valve Dis. 2013; 22(5): 669-674.
- 139Hamlin SA, Henry TS, Little BP, Lerakis S, Stillman AE. Mapping the future of cardiac MR imaging: case-based review of T1 and T2 mapping techniques. Radiographics. 2014; 34(6): 1594-1611. doi:10.1148/rg.346140030
- 140Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016; 18(1): 89. doi:10.1186/s12968-016-0308-4 Published 2016 Nov 30
- 141Bulluck H, Maestrini V, Rosmini S, et al. Myocardial T1 mapping. Circ J. 2015; 79(3): 487-494. doi:10.1253/circj.CJ-15-0054
- 142Pradella S, Grazzini G, Brandani M, et al. Cardiac magnetic resonance in patients with mitral valve prolapse: focus on late gadolinium enhancement and T1 mapping. Eur Radiol. 2019; 29(3): 1546-1554. doi:10.1007/s00330-018-5634-5
- 143Chivulescu M, Aabel EW, Gjertsen E, et al. Electrical markers and arrhythmic risk associated with myocardial fibrosis in mitral valve prolapse. Europace. 2022; 24(7): 1156-1163. doi:10.1093/europace/euac017
- 144Pavon AG, Arangalage D, Pascale P, et al. Myocardial extracellular volume by T1 mapping: a new marker of arrhythmia in mitral valve prolapse. J Cardiovasc Magn Reson. 2021; 23(1): 102. doi:10.1186/s12968-021-00797-2 Published 2021 Sep 13
- 145Sriram CS, Syed FF, Ferguson ME, et al. Malignant bileaflet mitral valve prolapse syndrome in patients with otherwise idiopathic out-of-hospital cardiac arrest. J Am Coll Cardiol. 2013; 62(3): 222-230. doi:10.1016/j.jacc.2013.02.060
- 146Kitkungvan D, Yang EY, El Tallawi KC, et al. Extracellular volume in primary mitral regurgitation. JACC Cardiovasc Imaging. 2021; 14(6): 1146-1160. doi:10.1016/j.jcmg.2020.10.010
- 147Guglielmo M, Arangalage D, Bonino MA, et al. Additional value of cardiac magnetic resonance feature tracking parameters for the evaluation of the arrhythmic risk in patients with mitral valve prolapse. J Cardiovasc Magn Reson. 2023; 25(1): 32. doi:10.1186/s12968-023-00944-x
- 148Everett RJ, Stirrat CG, Semple SI, Newby DE, Dweck MR, Mirsadraee S. Assessment of myocardial fibrosis with T1 mapping MRI. Clin Radiol. 2016; 71(8): 768-778. doi:10.1016/j.crad.2016.02.013
- 149Liu B, Edwards NC, Pennell D, Steeds RP. The evolving role of cardiac magnetic resonance in primary mitral regurgitation: ready for prime time? Eur Heart J Cardiovasc Imaging. 2019; 20(2): 123-130. doi:10.1093/ehjci/jey147
- 150Corrigan FE 3rd, Maini A, Reginauld S, Lerakis S. Contemporary evaluation of mitral regurgitation - 3D echocardiography, cardiac magnetic resonance, and procedural planning. Expert Rev Cardiovasc Ther. 2017; 15(9): 715-725. doi:10.1080/14779072.2017.1362981
- 151Gabriel RS, Kerr AJ, Raffel OC, Stewart RA, Cowan BR, Occleshaw CJ. Mapping of mitral regurgitant defects by cardiovascular magnetic resonance in moderate or severe mitral regurgitation secondary to mitral valve prolapse. J Cardiovasc Magn Reson. 2008; 10(1): 16. doi:10.1186/1532-429X-10-16. Published 2008 Apr 9.
- 152Mehta NK, Kim J, Siden JY, et al. Utility of cardiac magnetic resonance for evaluation of mitral regurgitation prior to mitral valve surgery. J Thorac Dis. 2017; 9(4): S246-S256. doi:10.21037/jtd.2017.03.54
- 153Mangold S, Castillo-Sang M, Schoepf UJ, et al. Imaging in minimally invasive mitral valve repair. J Thorac Imaging. 2015; 30(6): 378-385. doi:10.1097/RTI.0000000000000169
- 154Motiwala SR, Delling FN. Assessment of mitral valve disease: a review of imaging modalities. Curr Treat Options Cardiovasc Med. 2015; 17(7): 390. doi:10.1007/s11936-015-0390-1
- 155Thaden JJ, Tsang MY, Ayoub C, et al. Association between echocardiography laboratory accreditation and the quality of imaging and reporting for valvular heart disease. Circ Cardiovasc Imaging. 2017; 10(8):e006140. doi:10.1161/CIRCIMAGING.117.006140
- 156White JA, Fine NM, Gula L, et al. Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging. 2012; 5(1): 12-20. doi:10.1161/CIRCIMAGING.111.966085
- 157Stiles MK, Wilde AAM, Abrams DJ, et al. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm. 2021; 18(1): e1-e50. doi:10.1016/j.hrthm.2020.10.010