Volume 35, Issue 12 pp. 1947-1955
ORIGINAL INVESTIGATION

Physiological left ventricular segmental myocardial mechanics: Multiparametric polar mapping to determine intraventricular gradients of myocardial dynamics

Nikola Bogunovic MSc

Corresponding Author

Nikola Bogunovic MSc

Clinic for Cardiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany

Correspondence

Nikola Bogunovic, Clinic for Cardiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany.

Email: [email protected]

Search for more papers by this author
Frank van Buuren MD

Frank van Buuren MD

Clinic for Cardiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany

Search for more papers by this author
Hermann Esdorn MD

Hermann Esdorn MD

Institute for Radiology, Nuclear Medicine and Molecular Imaging, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany

Search for more papers by this author
Dieter Horstkotte MD

Dieter Horstkotte MD

Clinic for Cardiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany

Search for more papers by this author
Lukas Bogunovic PhD

Lukas Bogunovic PhD

Faculty of Physics, University of Bielefeld, Bielefeld, Germany

Search for more papers by this author
Lothar Faber MD

Lothar Faber MD

Clinic for Cardiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany

Search for more papers by this author
First published: 08 November 2018
Citations: 3
Bogunovic and van Buuren equally contributed to this work.

Abstract

Objective

We investigated physiological systolic left ventricular (LV) myocardial mechanics and gradients to provide a database for later studies of diseased hearts.

Methods

The analyses were performed in 131 heart-healthy individuals and included seven parameters of myocardial mechanics using speckle tracking echocardiography (STE).

Results

Basal to apical and circumferentially significant physiological intraventricular parameter gradients of myocardial activity were determined. Global mean values and segmental ranges were peak systolic longitudinal strain −21.2 ± 3.3%, 95% confidence interval [CI] −21.8% to −20.6%), gradient (basal to apical) −16.0% to −26.7%; peak systolic longitudinal strain rate −1.24 ± 0.31%/s, 95% CI −1.29% to −1.19%/s, gradient (basal to apical) −0.91% to −1.61%/s; post-systolic index 2.6 ± 3.2%, 95% CI 3.15%–2.05%, gradient (basal/medial/apical) 7.0/1.2/2.4%; pre-systolic stretch index 1.3 ± 2.7%, 95% CI 1.77%–0.83%, gradient (basal/medial/apical) 6.5/0.2/1.3%; peak longitudinal displacement 12.2 ± 2.6 mm, 95% CI 12.6–11.8 mm, gradient (basal to apical) 21.0–3.4 mm; time-to-peak longitudinal strain 370 ± 43 ms, 95% CI 377–363 ms, gradient (basal to apical) 396–361 ms; and time-to-peak longitudinal strain rate 180 ± 47 ms, 95% CI 188–172 ms, gradient (basal to apical) 150–200 ms.

Conclusion

This study generated a database of seven STE-derived parameters of physiological segmental and global myocardial LV mechanics. The resulting sets of three-dimensional intraventricular mappings of the entire LV provide physiological parameter gradients in baso-apical and circumferential direction by applying the 17-segment polar model. This will facilitate comparison of systolic myocardial activity of the healthy LV with diseased or otherwise altered (eg, sports) hearts.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.