Machine learning for predictive data analytics in medicine: A review illustrated by cardiovascular and nuclear medicine examples
Corresponding Author
Antoine Jamin
COTTOS Médical, Avrillé, France
LERIA–Laboratoire d'Etude et de Recherche en Informatique d'Angers, Univ. Angers, Angers, France
LARIS–Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Univ. Angers, Angers, France
Correspondence
Antoine Jamin, LERIA Département Informatique, Université d'Angers, 2 Boulevard de Lavoisier, 49045 Angers cedex 01, France.
Email: [email protected]
Search for more papers by this authorPierre Abraham
Sports Medicine Department, UMR Mitovasc CNRS 6015 INSERM 1228, Angers University Hospital, Angers, France
Search for more papers by this authorAnne Humeau-Heurtier
LARIS–Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Univ. Angers, Angers, France
Search for more papers by this authorCorresponding Author
Antoine Jamin
COTTOS Médical, Avrillé, France
LERIA–Laboratoire d'Etude et de Recherche en Informatique d'Angers, Univ. Angers, Angers, France
LARIS–Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Univ. Angers, Angers, France
Correspondence
Antoine Jamin, LERIA Département Informatique, Université d'Angers, 2 Boulevard de Lavoisier, 49045 Angers cedex 01, France.
Email: [email protected]
Search for more papers by this authorPierre Abraham
Sports Medicine Department, UMR Mitovasc CNRS 6015 INSERM 1228, Angers University Hospital, Angers, France
Search for more papers by this authorAnne Humeau-Heurtier
LARIS–Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Univ. Angers, Angers, France
Search for more papers by this authorAbstract
The evidence-based medicine allows the physician to evaluate the risk–benefit ratio of a treatment through setting and data. Risk-based choices can be done by the doctor using different information. With the emergence of new technologies, a large amount of data is recorded offering interesting perspectives with machine learning for predictive data analytics. Machine learning is an ensemble of methods that process data to model a learning problem. Supervised machine learning algorithms consist in using annotated data to construct the model. This category allows to solve prediction data analytics problems. In this paper, we detail the use of supervised machine learning algorithms for predictive data analytics problems in medicine. In the medical field, data can be split into two categories: medical images and other data. For brevity, our review deals with any kind of medical data excluding images. In this article, we offer a discussion around four supervised machine learning approaches: information-based, similarity-based, probability-based and error-based approaches. Each method is illustrated with detailed cardiovascular and nuclear medicine examples. Our review shows that model ensemble (ME) and support vector machine (SVM) methods are the most popular. SVM, ME and artificial neural networks often lead to better results than those given by other algorithms. In the coming years, more studies, more data, more tools and more methods will, for sure, be proposed.
CONFLICTS OF INTEREST
The authors have no conflicts of interest.
REFERENCES
- Adegoke, V. F., Chen, D., Banissi, E., & Barikzai, S. (2017). Prediction of breast cancer survivability using ensemble algorithms. In 2017 International Conference on Smart Systems and Technologies (SST) (pp. 223–231). https://doi.org/10.1109/SST.2017.8188699
10.1109/SST.2017.8188699 Google Scholar
- Ahn, H. K., Lee, H., Kim, S. G., & Hyun, S. H. (2019). Pre-treatment 18F-FDG PET-based radiomics predict survival in resected non-small cell lung cancer. Clinical Radiology, 74(6), 467–473. https://doi.org/10.1016/j.crad.2019.02.008
- Aktolun, C. (2019). Artificial intelligence and radiomics in nuclear medicine: Potentials and challenges. European Journal of Nuclear Medicine and Molecular Imaging, 46(13), 2731–2736. https://doi.org/10.1007/s00259-019-04593-0
- Alghamdi, W., Stamate, D., Vang, K., Stahl, D., Colizzi, M., Tripoli, G., Quattrone, D., Ajnakina, O., Murray, R. M., & Forti, M. D. (2016). A prediction modelling and pattern detection approach for the first-episode psychosis associated to Cannabis use. In 2016 15th IEEE International Conference on Machine Learning and Appli-cations (ICMLA) (pp. 825–830). https://doi.org/10.1109/ICMLA.2016.0148
10.1109/ICMLA.2016.0148 Google Scholar
- Ammad-Ud-Din, M., Khan, S. A., Wennerberg, K., & Aittokallio, T. (2017). Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics (Oxford, England), 33, i359–i368. https://doi.org/10.1093/bioinformatics/btx266
- Armero, C., Forné, C., Rué, M., Forte, A., Perpiñán, H., Gómez, G., & Baré, M. (2016). Bayesian joint ordinal and survival modeling for breast cancer risk assessment. Statistics in Medicine, 35, 5267–5282. https://doi.org/10.1002/sim.7065
- Bakal, G., Talari, P., Kakani, E. V., & Kavuluru, R. (2018). Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. Journal of Biomedical Informatics, 82, 189–199. https://doi.org/10.1016/j.jbi.2018.05.003
- Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006
- Bashir, S., Qamar, U., & Hassan Khan, F. (2015). BagMOOV: A novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting. Australasian Physical & Engineering Sciences in Medicine, 38(2), 305–323. https://doi.org/10.1007/s13246-015-0337-6
- Bendtsen, C., Degasperi, A., Ahlberg, E., & Carlsson, L. (2017). Improving machine learning in early drug discovery. Annals of Mathematics and Artificial Intelligence, 81, 155–166. https://doi.org/10.1007/s10472-017-9541-2
- Billings, J. M., Eder, M., Flood, W. C., Singh Dhami, D., Natarajan, S., & Whitlow, C. T. (2017). Machine learning applications to resting-state functional MR imaging analysis. Functional Connectivity, 27, 609–620. https://doi.org/10.1016/j.nic.2017.06.010
- Blum, E. S., Porras, A. R., Biggs, E., Tabrizi, P. R., Sussman, R. D., Sprague, B. M., Shalaby-Rana, E., Majd, M., Pohl, H. G., & Linguraru, M. G. (2018). Early detection of ureteropelvic junction obstruction using signal analysis and machine learning: A dynamic solution to a dynamic problem. Journal of Urology, 199(3), 847–852. https://doi.org/10.1016/j.juro.2017.09.147
- Borisov, N., Tkachev, V., Muchnik, I., & Buzdin, A. (2017). Individual drug treatment prediction in oncology based on machine learning using cell culture gene expression data. In Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics (pp. 1–6). https://doi.org/10.1145/3155077.3155078
10.1145/3155077.3155078 Google Scholar
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
- Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classiffication and Regression Trees, 1st Edition. Taylor and Francis. https://doi.org/10.1201/9781315139470
- Bzdok, D., & Meyer-Lindenberg, A. (2017). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 223–230. https://doi.org/10.1016/j.bpsc.2017.11.007
- Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & Rong, X. (2015). Data mining for the internet of things: Literature review and challenges, data mining for the internet of things: Literature review and challenges. International Journal of Distributed Sensor Networks, 11, 431047. https://doi.org/10.1155/2015/431047
- Cheng, J., Tegge, A. N., & Baldi, P. (2008). Machine learning methods for protein structure prediction. IEEE Reviews in Biomedical Engineering, 1, 41–49. https://doi.org/10.1109/RBME.2008.2008239
- Chetty, N., Vaisla, K. S., & Patil, N. (2015). An improved method for disease prediction using fuzzy approach. In 2015 Second International Conference on Advances in Computing and Communication Engineering (pp. 568–572). https://doi.org/10.1109/ICACCE.2015.67
10.1109/ICACCE.2015.67 Google Scholar
- Coley, R. Y., Fisher, A. J., Mamawala, M., Carter, H. B., Pienta, K. J., & Zeger, S. L. (2017). A Bayesian hierarchical model for prediction of latent health states from multiple data sources with application to active surveillance of prostate cancer. Biometrics, 73, 625–634. https://doi.org/10.1111/biom.12577
- Collij, L. E., Heeman, F., Kuijer, J. P. A., Ossenkoppele, R., Benedictus, M. R., Möller, C., Verfaillie, S. C. J., Sanz-Arigita, E. J., van Berckel, B. N. M., van der Flier, W. M., Scheltens, P., Barkhof, F., & Wink, A. M. (2016). Application of machine learning to arterial spin labeling in mild cognitive impairment and Alzheimer disease. Radiology, 281(3), 865–875. https://doi.org/10.1148/radiol.2016152703
- Delibašić, B., Radovanović, S., Jovanović, M., Bohanec, M., & Suknović, M. (2018). Integrating knowledge from DEX hierarchies into a logistic regression stacking model for predicting ski injuries. Journal of Decision Systems, 27(sup1), 201–208 https://doi.org/10.1080/12460125.2018.1460164
- Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
- Deschamps, T., Le Goff, C. G., Berrut, G., Cornu, C., & Mignardot, J. B. (2016). A decision model to predict the risk of the first fall onset. Experimental Gerontology, 81, 51–55. https://doi.org/10.1016/j.exger.2016.04.016
- Dimitrov, D. V. (2016). Medical internet of things and big data in healthcare. Healthcare Informatics Research, 22(3), 156–163. https://doi.org/10.4258/hir.2016.22.3.156
- Ellmann, S., Seyler, L., Evers, J., Heinen, H., Bozec, A., Prante, O., Kuwert, T., Uder, M., & Bäuerle, T. (2019). Prediction of early metastatic disease in experimental breast cancer bone metastasis by combining PET/CT and MRI parameters to a Model-Averaged Neural Network. Bone, 120, 254–261. https://doi.org/10.1016/j.bone.2018.11.008
- Ertuğrul, Ö. F., Kaya, Y., Tekin, R., & Almalı, M. N. (2016). Detection of Parkinson's disease by shifted one dimensional local binary patterns from gait. Expert Systems with Applications, 56, 156–163. https://doi.org/10.1016/j.eswa.2016.03.018
- Fabris, F., Freitas, A. A., & Tullet, J. M. A. (2016). An extensive empirical comparison of probabilistic hierarchical classifiers in datasets of ageing-related genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13, 1045–1058. https://doi.org/10.1109/TCBB.2015.2505288
- Fabris, F., Magalhães, J. P. D., & Freitas, A. A. (2017). A review of supervised machine learning applied to ageing research. Biogerontology, 18(2), 171–188. https://doi.org/10.1007/s10522-017-9683-y
- Gruber, A., & Ben-Gal, I. (2012). Efficient Bayesian network learning for system optimization in reliability engineering. Quality Technology & Quantitative Management, 9, 97–114. https://doi.org/10.1080/16843703.2012.11673280
- Gupta, N., Ahuja, N., Malhotra, S., Bala, A., & Kaur, G. (2017). Intelligent heart disease prediction in cloud environment through ensembling. Expert Systems, 34, e12207. https://doi.org/10.1111/exsy.12207
- Kop R., Hoogendoorn M., Teije A., Büchner F. L., Slottje P., Moons L. M. G., Numans M. E. (2016). Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on routine electronic medical records. Computers in Biology and Medicine, 76, 30–38. https://doi.org/10.1016/j.compbiomed.2016.06.019
- Hu, Y.-H., Tai, C.-T., Chen, S.-C.-C., Lee, H.-W., & Sung, S.-F. (2017). Predicting return visits to the emergency department for pediatric patients: Applying supervised learning techniques to the Taiwan National Health Insurance Research Database. Computer Methods and Programs in Biomedicine, 144, 105–112. https://doi.org/10.1016/j.cmpb.2017.03.022
- Huang, X., Sun, Y., Trow, P., Chatterjee, S., Chakravartty, A., Tian, L., & Devanarayan, V. (2017). Patient subgroup identification for clinical drug development. Statistics in Medicine, 36, 1414–1428. https://doi.org/10.1002/sim.7236
- Ibrahim, A., Vallières, M., Woodruff, H., Primakov, S., Beheshti, M., Keek, S., Refaee, T., Sanduleanu, S., Walsh, S., Morin, O., Lambin, P., Hustinx, R., & Mottaghy, F. M. (2019). Radiomics analysis for clinical decision support in nuclear medicine. Seminars in Nuclear Medicine, 49(5), 438–449. https://doi.org/10.1053/j.semnuclmed.2019.06.005
- Ingrisch, M., Schöppe, F., Paprottka, K., Fabritius, M., Strobl, F. F., De Toni, E. N., Ilhan, H., Todica, A., Michl, M., & Paprottka, P. M. (2018). Prediction of 90 Y radioembolization outcome from pretherapeutic factors with random survival forests. Journal of Nuclear Medicine, 59, 769–773. https://doi.org/10.2967/jnumed.117.200758
- Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.. https://doi.org/10.1109/ACCESS.2015.2437951
- Ivascu, T., Cincar, K., Dinis, A., & Negru, V. (2017). Activities of daily living and falls recognition and classification from the wearable sensors data. In 2017 E-Health and Bioengineering Conference (EHB) (pp. 627–630). https://doi.org/10.1109/EHB.2017.7995502
10.1109/EHB.2017.7995502 Google Scholar
- Jarmulski, W., Wieczorkowska, A., Trzaska, M., Ciszek, M., & Paczek, L. (2018). Machine learning models for predicting patients survival after liver transplantation. Computer Science, 19, 223. https://doi.org/10.7494/csci.2018.19.2.2746
10.7494/csci.2018.19.2.2746 Google Scholar
- Jeon, H., Lee, W., Park, H., Lee, H. J., Kim, S. K., Kim, H. B., Jeon, B., & Suk Park, K. (2017). High-accuracy automatic classification of Parkinsonian tremor severity using machine learning method. Physiological Measurement, 38, 1980. https://doi.org/10.1088/1361-6579/aa8e1f
- Jeong, S. Y., Kim, W., Byun, B. H., Kong, C.-B., Song, W. S., Lim, I., Lim, S. M., & Woo, S.-K. (2019). Prediction of chemotherapy response of osteosarcoma using baseline 18f-FDG textural features machine learning approaches with PCA. Contrast Media & Molecular Imaging, 2019, 3515080. https://doi.org/10.1155/2019/3515080
- Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of Big Data research. Big Data Research, 2, 59–64. https://doi.org/10.1016/j.bdr.2015.01.006
- Jing, B., Meng, H. B., Yang, S. C., Zhao, D. S., & Shang, X. Y. (2016). The diagnostic model of neonatal respiratory distress syndrome based on intelligent algorithm. In 2016 8th International Conference on Information Technology in Medicine and Education (ITME) (pp. 319–323). https://doi.org/10.1109/ITME.2016.0078
10.1109/ITME.2016.0078 Google Scholar
- Kabeshova, A., Launay, C. P., Gromov, V. A., Fantino, B., Levinoff, E. J., Allali, G., & Beauchet, O. (2016). Falling in the elderly: Do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies. European Journal of Internal Medicine, 27, 48–56. https://doi.org/10.1016/j.ejim.2015.11.019
- Kadi, I., & Idri, A. (2015). A decision tree-based approach for cardiovascular dysautonomias diagnosis: A case study. In 2015 IEEE Symposium Series on Computational Intelligence (pp. 816–823). https://doi.org/10.1109/SSCI.2015.121
10.1109/SSCI.2015.121 Google Scholar
- Kelleher, J. D., Mac Namee, B., & D'Arcy, A. (2015). Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies, 1st Edition, . MIT Press.
- Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy K-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(4), 580–585. https://doi.org/10.1109/TSMC.1985.6313426
- Khalifa, M., & Alswailem, O. (2015). Hospital information systems (HIS) acceptance and satisfaction: A case study of a tertiary care hospital. Procedia Computer Science, 63, 198–204. https://doi.org/10.1016/j.procs.2015.08.334
10.1016/j.procs.2015.08.334 Google Scholar
- Khan, T., Westin, J., & Dougherty, M. (2014). Classification of speech intelligibility in Parkinson's disease. Biocybernetics and Biomedical Engineering, 34, 35–45. https://doi.org/10.1016/j.bbe.2013.10.003
- Khanna, D., & Sharma, A. (2018). Kernel-Based Naive Bayes classifier for medical predictions. In Intelligent Engineering Informatics (pp. 91–101). Springer. https://doi.org/10.1007/978-981-10-7566-7_10
10.1007/978-981-10-7566-7_10 Google Scholar
- Kim, H., Ji Lee, H., Lee, W., Kwon, S., Kyong Kim, S., Seon Jeon, H., Park, H., Won Shin, C., Jin Yi, W., Jeon, B. S., & Park, K. S. (2015). Unconstrained detection of freezing of Gait in Parkinson's disease patients using smartphone. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2015. pp. 3751–3754. https://doi.org/10.1109/EMBC.2015.7319209
- Kim, K.-J., & Cho, S.-B. (2015). Meta-classifiers for high-dimensional, small sample classiffication for gene expression analysis. Pattern Analysis and Applications, 18, 553–569. https://doi.org/10.1007/s10044-014-0369-7
- Kramer, D., Veeranki, S., Hayn, D., Quehenberger, F., Leodolter, W., Jagsch, C., & Schreier, G. (2017). Development and validation of a multivariable prediction model for the occurrence of delirium in hospitalized gerontopsychiatry and internal medicine patients. Studies in Health Technology and Informatics, 236, 32–39. https://doi.org/10.3233/978-1-61499-759-7-32
- Krikunov, A. V., Bolgova, E. V., Krotov, E., Abuhay, T. M., Yakovlev, A. N., & Kovalchuk, S. V. (2016). Complex data-driven predictive modeling in personalized clinical decision support for acute coronary syndrome episodes. Procedia Computer Science, 80, 518–529. https://doi.org/10.1016/j.procs.2016.05.332
10.1016/j.procs.2016.05.332 Google Scholar
- Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics, 9, 1350–1371. https://doi.org/10.1214/15-AOAS848
- Leung, M. K. K., Delong, A., Alipanahi, B., & Frey, B. J. (2016). Machine learning in genomic medicine: A review of computational problems and data sets. Proceedings of the IEEE, 104, 176–197. https://doi.org/10.1109/JPROC.2015.2494198
- Li, H., Xu, C., Xin, B., Zheng, C., Zhao, Y., Hao, K., Wang, Q., Wahl, R. L., Wang, X., & Zhou, Y. (2019). 18f-FDG PET/CT radiomic analysis with machine learning for identifying bone marrow involvement in the patients with suspected relapsed acute leukemia. Theranostics, 9(16), 4730–4739. https://doi.org/10.7150/thno.33841
- Lo, Y.-T., Fujita, H., & Pai, T.-W. (2016). Prediction of coronary artery disease based on ensemble learning approaches and co-expressed observations. Journal of Mechanics in Medicine and Biology, 16, 1640010. https://doi.org/10.1142/S0219519416400108
- Luo, G., Lu, F., Jiang, L., Cai, Y., & Zhang, Y. (2015). Virtual screening of cytochrome P450 2a6 inhibitors from traditional Chinese medicine using support vector machine and molecular docking. In 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI) (pp. 505–509). https://doi.org/10.1109/BMEI.2015.7401557
10.1109/BMEI.2015.7401557 Google Scholar
- Maslennikov, E. D., Sulimov, A. V., Savkin, I. A., Evdokimova, M. A., Zateyshchikov, D. A., Nosikov, V. V., & Sulimov, V. B. (2015). An intuitive risk factors search algorithm: Usage of the Bayesian network technique in personalized medicine. Journal of Applied Statistics, 42, 71–87. https://doi.org/10.1080/02664763.2014.934664
- Mathur, P., Srivastava, S., Xu, X., & Mehta, J. (2020). Artificial intelligence, machine learning, and cardiovascular disease. Clinical Medicine Insights. Cardiology, 14, 1179546820927404. https://doi.org/10.1177/1179546820927404
- Mease, D., & Wyner, A. (2008). Evidence contrary to the statistical view of boosting. Journal of Machine Learning Research, 9, 131–156.
- Mirzaei, G., Adeli, A., & Adeli, H. (2016). Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Reviews in the Neurosciences, 27(8), 857–870. https://doi.org/10.1515/revneuro-2016-0029
- Mitchell, T. M. (1997). Machine Learning, 1st ed. McGraw-Hill Inc.
- Modu, B., Polovina, N., Lan, Y., Konur, S., Asyhari, A., & Peng, Y. (2017). Towards a predictive analytics-based intelligent malaria outbreak warning system. Applied Sciences, 7(8), 836. https://doi.org/10.3390/app7080836
10.3390/app7080836 Google Scholar
- Montoye, A. H. K., Begum, M., Henning, Z., , & Pfeiffer, K. A. (2017). Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data. Physiological Measurement, 38(2), 343–357. https://doi.org/10.1088/1361-6579/38/2/343
- Nagarajan, R., & Upreti, M. (2017). An ensemble predictive modeling framework for breast cancer classification. Systems approaches for identifying disease genes and drug. Methods, 131, 128–134. https://doi.org/10.1016/j.ymeth.2017.07.011
- Nikoo, M. R., Kerachian, R., & Alizadeh, M. R. (2018). A fuzzy KNN-based model for significant wave height prediction in large lakes. Oceanologia, 60, 153–168. https://doi.org/10.1016/j.oceano.2017.09.003
- Oztaner, S. M., Taskaya Temizel, T., Erdem, S. R., & Ozer, M. (2015). A Bayesian estimation framework for pharmacogenomics driven warfarin dosing: A comparative study. IEEE Journal of Biomedical and Health Informatics, 19(5), 1724–1733. https://doi.org/10.1109/JBHI.2014.2336974
- Oztekin, A., Al-Ebbini, L., Sevkli, Z., & Delen, D. (2018). A decision analytic approach to predicting quality of life for lung transplant recipients: A hybrid genetic algorithms-based methodology. European Journal of Operational Research, 266(2), 639–651. https://doi.org/10.1016/j.ejor.2017.09.034
- Papp, L., Pötsch, N., Grahovac, M., Schmidbauer, V., Woehrer, A., Preusser, M., Mitterhauser, M., Kiesel, B., Wadsak, W., Beyer, T., Hacker, M., & Traub-Weidinger, T. (2018). Glioma survival prediction with combined analysis of in vivo 11c-MET PET features, ex vivo features, and patient features by supervised machine learning. Journal of Nuclear Medicine, 59(6), 892–899. https://doi.org/10.2967/jnumed.117.202267
- Pavel, M., Jimison, H. B., Wactlar, H. D., Hayes, T. L., Barkis, W., Skapik, J., & Kaye, J. (2013). The role of technology and engineering models in transforming healthcare. IEEE Reviews in Biomedical Engineering, 6, 156–177. https://doi.org/10.1109/RBME.2012.2222636
- Portugal, I., Alencar, P., & Cowan, D. (2017). The use of machine learning algorithms in recommender systems: A systematic review. Expert Systems with Applications, 97, 205–227. https://doi.org/10.1016/j.eswa.2017.12.020
- Pradeep, K. R., & Naveen, N. C. (2016). Predictive analysis of diabetes using J48 algorithm of classification techniques. In 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I) (pp. 347–352). https://doi.org/10.1109/IC3I.2016.7917987
10.1109/IC3I.2016.7917987 Google Scholar
- Qian, Z., Li, Y., Wang, Y., Li, L., Li, R., Wang, K., Li, S., Tang, K., Zhang, C., Fan, X., Chen, B., & Li, W. (2019). Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classiffers. Cancer Letters, 451, 128–135. https://doi.org/10.1016/j.canlet.2019.02.054
- Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/BF00116251
10.1007/BF00116251 Google Scholar
- Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.
- Quinlan, J. R. (1996) Boosting, and C4.S. In Proceedings of the Thirteenth National Conference on Artificial Intelligence Vol. 1, (pp. 725–730).
- Rastegar, S., Vaziri, M., Qasempour, Y., Akhash, M. R., Abdalvand, N., Shiri, I., Abdollahi, H., & Zaidi, H. (2020). Radiomics for classification of bone mineral loss: A machine learning study. Diagnostic and Interventional Imaging, 101(9), 599–610. https://doi.org/10.1016/j.diii.2020.01.008
- Saleh, L., Mcheick, H., Ajami, H., Mili, H., & Dargham, J. (2017). Comparison of Machine Learning Algorithms to Increase Prediction Accuracy of COPD Domain. In Enhanced Quality of Life and Smart Living, 247–254.
- Samant, P., & Agarwal, R. (2018). Machine learning techniques for medical diagnosis of diabetes using iris images. Computer Methods and Programs in Biomedicine, 157, 121–128. https://doi.org/10.1016/j.cmpb.2018.01.004
- Sankar, A., & Sridhar, R. (2017). Gene interactions and inuences identi_cation for diabetes from bio-medical literature. In 2017 International Conference on Communication and Signal Processing (ICCSP) (pp. 0 576–0582). https://doi.org/10.1109/ICCSP.2017.8286424
10.1109/ICCSP.2017.8286424 Google Scholar
- Sanz, J., Paternain, D., Galar, M., Fernandez, J., Reyero, D., & Belzunegui, T. (2017). A new survival status prediction system for severe trauma patients based on a multiple classifier system. Computer Methods and Programs in Biomedicine, 142, 1–8. https://doi.org/10.1016/j.cmpb.2017.02.011
- Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. IEEE Reviews in Biomedical Engineering, 11, 36–52.. https://doi.org/10.1109/RBME.2018.2810957
- Schapire, R. E. (1999). A brief introduction to boosting. In Proceedings of the 16th International Joint Conference on Artificial Intelligence, Vol. 2, (pp. 1401–1406).
- Schwartzi, M., Parkl, M., Phanl, J. H., & Wang, M. D. (2015). Integration of multimodal RNA-seq data for prediction of kidney cancer survival. Proceedings IEEE International Conference on Bioinformatics and Biomedicine, 2015, 1591–1595. https://doi.org/10.1109/bibm.2015.7359913
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Shayesteh, S. P., Alikhassi, A., Fard Esfahani, A., Miraie, M., Geramifar, P., Bitarafan-rajabi, A., & Haddad, P. (2019). Neo-adjuvant chemoradiotherapy response prediction using MRI based ensemble learning method in rectal cancer patients. Physica Medica, 62, 111–119. https://doi.org/10.1016/j.ejmp.2019.03.013
- Sobradillo, P., Pozo, F., & Agustí, Á. (2011). P4 medicine: The future around the corner. Archivos De Bronconeumología ((English Edition)), 47(1), 35–40. https://doi.org/10.1016/S1579-2129(11)70006-4
- Stojkoska, B. L. R., & Trivodaliev, K. V. (2017). A review of internet of things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464. https://doi.org/10.1016/j.jclepro.2016.10.006
- Tripoliti, E. E., Tzallas, A. T., Tsipouras, M. G., Rigas, G., Bougia, P., Leontiou, M., Konitsiotis, S., Chondrogiorgi, M., Tsouli, S., & Fotiadis, D. I. (2013). Automatic detection of freezing of gait events in patients with Parkinson's disease. Computer Methods and Programs in Biomedicine, , 110(1), 12–26. https://doi.org/10.1016/j.cmpb.2012.10.016
- Tylman, W., Waszyrowski, T., Napieralski, A., Kamiński, M., Trafidło, T., Kulesza, Z., Kotas, R., Marciniak, P., Tomala, R., & Wenerski, M. (2016). Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks. Computers in Biology and Medicine, 69, 245–253. https://doi.org/10.1016/j.compbiomed.2015.08.015
- Uribe, C. F., Mathotaarachchi, S., Gaudet, V., Smith, K. C., Rosa-Neto, P., Bénard, F., Black, S. E., & Zukotynski, K. (2019). Machine learning in nuclear medicine: Part 1—Introduction. Journal of Nuclear Medicine, 60(4), 451–458. https://doi.org/10.2967/jnumed.118.223495
- Verde, P. E., Ohmann, C., Morbach, S., & Icks, A. (2016). Bayesian evidence synthesis for exploring generalizability of treatment effects: A case study of combining randomized and non-randomized results in diabetes. Statistics in Medicine, 35, 1654–1675. https://doi.org/10.1002/sim.6809
- Wan, C., Freitas, A. A., & de Magalhães, J. P. (2015). Predicting the pro-longevity or anti-longevity effect of model organism genes with new hierarchical feature selection methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12, 262–275. https://doi.org/10.1109/tcbb.2014.2355218
- Wang, X., Yang, B., Huang, J., Chen, H., Gu, X., Bai, Y., & Du, Z. (2016). IASM: A system for the intelligent active surveillance of malaria. Computational and Mathematical Methods in Medicine, 2016, 11. https://doi.org/10.1155/2016/2080937
- Wernick, M. N., Yang, Y., Brankov, J. G., Yourganov, G., & Strother, S. C. (2010). Machine learning in medical imaging. IEEE Signal Processing Magazine, 27(4), 25–38.. https://doi.org/10.1109/MSP.2010.936730
- Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things | A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274. https://doi.org/10.1007/s10796-014-9489-2
- Wottschel, V., Chard, D. T., Enzinger, C., Filippi, M., Frederiksen, J. L., Gasperini, C., Giorgio, A., Rocca, M. A., Rovira, A., De Stefano, N., Tintoré, M., Alexander, D. C., Barkhof, F., & Ciccarelli, O. (2019). SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage: Clinical, 24, 102011. https://doi.org/10.1016/j.nicl.2019.102011
- Xia, Y., Gao, Q., & Ye, Q. (2015). Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models. Biomedical Signal Processing and Control, 18, 254–262. https://doi.org/10.1016/j.bspc.2015.02.002
- Xu, W., Zhang, J., Zhang, Q., & Wei, X. (2017). Risk prediction of type II diabetes based on random forest model. In 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) (pp. 382–386). https://doi.org/10.1109/AEEICB.2017.7972337
10.1109/AEEICB.2017.7972337 Google Scholar
- Yin, Y., Zeng, Y., Chen, X., & Fan, Y. (2016). The internet of things in healthcare: An overview. Journal of Industrial Information Integration, 1, 3–13. https://doi.org/10.1016/j.jii.2016.03.004
- Yuvaraj, R., Murugappan, M., Mohamed Ibrahim, N., Sundaraj, K., Iqbal Omar, M., Mohamad, K., & Palaniappan, R. (2014). Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activity. Biomedical Signal Processing and Control, 14, 108–116. https://doi.org/10.1016/j.bspc.2014.07.005
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms, 1st ed. Chapman & Hall/CRC.
10.1201/b12207 Google Scholar