Complex Functional Maps: A Conformal Link Between Tangent Bundles
Corresponding Author
Nicolas Donati
LIX, Ecole Polytechnique, IP Paris, Paris, France
Search for more papers by this authorEtienne Corman
Université de Lorraine, CNRS, Inria, LORIA, Lorraine, France
Search for more papers by this authorMaks Ovsjanikov
LIX, Ecole Polytechnique, IP Paris, Paris, France
Search for more papers by this authorCorresponding Author
Nicolas Donati
LIX, Ecole Polytechnique, IP Paris, Paris, France
Search for more papers by this authorEtienne Corman
Université de Lorraine, CNRS, Inria, LORIA, Lorraine, France
Search for more papers by this authorMaks Ovsjanikov
LIX, Ecole Polytechnique, IP Paris, Paris, France
Search for more papers by this authorAbstract
In this paper, we introduce complex functional maps, which extend the functional map framework to conformal maps between tangent vector fields on surfaces. A key property of these maps is their orientation awareness. More specifically, we demonstrate that unlike regular functional maps that link functional spaces of two manifolds, our complex functional maps establish a link between oriented tangent bundles, thus permitting robust and efficient transfer of tangent vector fields. By first endowing and then exploiting the tangent bundle of each shape with a complex structure, the resulting operations become naturally orientation-aware, thus favouring orientation and angle preserving correspondence across shapes, without relying on descriptors or extra regularization. Finally, and perhaps more importantly, we demonstrate how these objects enable several practical applications within the functional map framework. We show that functional maps and their complex counterparts can be estimated jointly to promote orientation preservation, regularizing pipelines that previously suffered from orientation-reversing symmetry errors.
References
- [ABCCO13] Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing (2013), Eurographics Association, pp. 73–82.
- [ACBCO17] Azencot O., Corman E., Ben-Chen M., Ovsjanikov M.: Consistent functional cross field design for mesh quadrangulation. ACM Transactions on Graphics 36, 4 (July 2017). https://doi.org/10.1145/3072959.3073696.
- [AK13] Aflalo Y., Kimmel R.: Spectral multidimensional scaling. Proceedings of the National Academy of Sciences 110, 45 (2013), 18052–18057.
- [AOCBC15] Azencot O., Ovsjanikov M., Chazal F., Ben-Chen M.: Discrete derivatives of vector fields on surfaces–an operator approach. ACM Transactions on Graphics (TOG) 34, 3 (2015), 1–13.
- [ASC11] Aubry M., Schlickewei U., Cremers D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on (2011), IEEE, pp. 1626–1633.
- [AVBC16] Azencot O., Vantzos O., Ben-Chen M.: Advection-based function matching on surfaces. Computer Graphics Forum 35, (2016), 55–64.
- [BCA19] Ben-Chen M., Azencot O.: Operator-based representations of discrete tangent vector fields. In Handbook of Numerical Analysis, vol. 20. Elsevier, 2019, pp. 117–147.
- [BCBB16] Biasotti S., Cerri A., Bronstein A., Bronstein M.: Recent trends, applications, and perspectives in 3d shape similarity assessment. Computer Graphics Forum 35, 6 (2016), 87–119.
- [BDK17] Burghard O., Dieckmann A., Klein R.: Embedding shapes with Green's functions for global shape matching. Computers & Graphics 68 (2017), 1–10.
- [BGV03] Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac Operators. Springer Science & Business Media, 2003.
- [BKP*10] Botsch M., Kobbelt L., Pauly M., Alliez P., Lévy B.: Polygon Mesh Processing. CRC press, 2010.
10.1201/b10688 Google Scholar
- [BRLB14] Bogo F., Romero J., Loper M., Black M. J.: FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings of CVPR (Columbus, Ohio, 2014), IEEE, pp. 3794–3801.
- [Car92] Carmo M. P. d.: Riemannian Geometry. Birkhäuser, 1992.
10.1007/978-1-4757-2201-7 Google Scholar
- [CO19] Corman E., Ovsjanikov M.: Functional characterization of deformation fields. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1–19.
- [COC15] Corman E., Ovsjanikov M., Chambolle A.: Continuous matching via vector field flow. Computer Graphics Forum 34, 5 (2015), 129–139.
- [CSBC*17] Corman E., Solomon J., Ben-Chen M., Guibas L., Ovsjanikov M.: Functional characterization of intrinsic and extrinsic geometry. ACM Transactions on Graphics (TOG) 36, 2 (2017), 1–17.
- [DSO20] Donati N., Sharma A., Ovsjanikov M.: Deep geometric functional maps: robust feature learning for shape correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 8592–8601.
- [ELC20] Eisenberger M., Lahner Z., Cremers D.: Smooth shells: Multi-scale shape registration with functional maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 12265–12274.
- [ERGB16] Eynard D., Rodolà E., Glashoff K., Bronstein M. M.: Coupled functional maps. In 2016 Fourth International Conference on 3D Vision (3DV) (Oct 2016), pp. 399–407.
- [GGLZ10] Gu X. D., Guo R., Luo F., Zeng W.: Discrete laplace-beltrami operator determines discrete Riemannian metric. arXiv preprint arXiv:1010.4070 (2010).
- [GP10] Guillemin V., Pollack A.: Differential Topology, vol. 370. American Mathematical Soc., 2010.
10.1090/chel/370 Google Scholar
- [GR20] Ginzburg D., Raviv D.: Cyclic functional mapping: Self-supervised correspondence between non-isometric deformable shapes. In European Conference on Computer Vision (2020), Springer, pp. 36–52.
- [HJ12] Horn R. A., Johnson C. R.: Matrix analysis. Cambridge university press, 2012.
10.1017/CBO9781139020411 Google Scholar
- [HLR*19] Halimi O., Litany O., Rodola E., Bronstein A. M., Kimmel R.: Unsupervised learning of dense shape correspondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 4370–4379.
- [HO17] Huang R., Ovsjanikov M.: Adjoint map representation for shape analysis and matching. Computer Graphics Forum 36, 5 (2017), 151–163.
- [HWG14] Huang Q., Wang F., Guibas L.: Functional map networks for analyzing and exploring large shape collections. ACM Transactions on Graphics (TOG) 33, 4 (2014), 36.
- [KBB*13] Kovnatsky A., Bronstein M., Bronstein A., Glashoff K., Kimmel R.: Coupled quasi-harmonic bases. Computer Graphics Forum 32, 2pt4 (2013), 439–448.
- [KCPS13] Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Transactions on Graphics (ToG) 32, 4 (2013), 1–10.
- [KLF11] Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. In ACM Transactions on Graphics (TOG) (2011), vol. 30, ACM, p. 79.
- [KO18] Kleiman Y., Ovsjanikov M.: Robust structure-based shape correspondence. In Computer Graphics Forum (2018), Wiley Online Library.
- [KSS06] Kharevych L., Springborn B., Schröder P.: Discrete conformal mappings via circle patterns. ACM Transactions on Graphics (TOG) 25, 2 (2006), 412–438.
- [Lee13] Lee J. M.: Smooth manifolds. In Introduction to Smooth Manifolds. Springer, 2013, pp. 1–31.
10.1007/978-1-4419-9982-5_1 Google Scholar
- [LF09] Lipman Y., Funkhouser T.: Möbius voting for surface correspondence. ACM Transactions on Graphics (TOG) 28, 3 (2009), 1–12.
- [LRR*17] Litany O., Remez T., Rodolà E., Bronstein A., Bronstein M.: Deep functional maps: Structured prediction for dense shape correspondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), IEEE, pp. 5659–5667.
- [MMRC20] Marin R., Melzi S., Rodolá E., Castellani U.: Farm: Functional automatic registration method for 3d human bodies. Computer Graphics Forum 39, 1 (2020), 160–173.
- [Mor01] Morita S.: Geometry of Differential Forms. American Mathematical Society, 2001.
10.1090/mmono/201 Google Scholar
- [MRR*19] Melzi S., Ren J., Rodolà E., Sharma A., Wonka P., Ovsjanikov M.: Zoomout: Spectral upsampling for efficient shape correspondence. ACM Transactions on Graphics (TOG) 38, 6 (Nov. 2019), 155:1–155:14.
- [MTAD08] Mullen P., Tong Y., Alliez P., Desbrun M.: Spectral conformal parameterization. Computer Graphics Forum, 27, (2008), 1487–1494.
- [NMR*18] Nogneng D., Melzi S., Rodolà E., Castellani U., Bronstein M., Ovsjanikov M.: Improved functional mappings via product preservation. Computer Graphics Forum 37, 2 (2018), 179–190.
- [NO17] Nogneng D., Ovsjanikov M.: Informative descriptor preservation via commutativity for shape matching. Computer Graphics Forum 36, 2 (2017), 259–267.
- [OBCS*12] Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31, 4 (2012), 30:1–30:11.
- [OCB*17] Ovsjanikov M., Corman E., Bronstein M., Rodolà E., Ben-Chen M., Guibas L., Chazal F., Bronstein A.: Computing and processing correspondences with functional maps. In ACM SIGGRAPH 2017 Courses (2017), SIGGRAPH '17, pp. 5:1–5:62.
- [OMPG13] Ovsjanikov M., Mérigot Q., Pătrăucean V., Guibas L.: Shape matching via quotient spaces. Computer Graphics Forum 32, 5 (2013), 1–11.
- [PO18] Poulenard A., Ovsjanikov M.: Multi-directional geodesic neural networks via equivariant convolution. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–14.
- [PRM*21] Pai G., Ren J., Melzi S., Wonka P., Ovsjanikov M.: Fast sinkhorn filters: using matrix scaling for non-rigid shape correspondence with functional maps. In CVPR (2021).
- [RCB*17] Rodolà E., Cosmo L., Bronstein M., Torsello A., Cremers D.: Partial functional correspondence. Computer Graphics Forum 36, 1 (2017), 222–236.
- [Rem91] Remmert R.: Theory of Complex Functions, vol. 122. Springer Science & Business Media, 1991.
- [RL03] Ray N., Lévy B.: Hierarchical least squares conformal map. In 11th Pacific Conference on Computer Graphics and Applications, 2003. Proceedings. (2003), IEEE, pp. 263–270.
- [RMOW20] Ren J., Melzi S., Ovsjanikov M., Wonka P.: Maptree: Recovering multiple solutions in the space of maps. ACM Transactions on Graphics 39, 6 (Nov. 2020).
- [RMWO21] Ren J., Melzi S., Wonka P., Ovsjanikov M.: Discrete optimization for shape matching. In SGP (2021).
- [ROA*13] Rustamov R. M., Ovsjanikov M., Azencot O., Ben-Chen M., Chazal F., Guibas L.: Map-based exploration of intrinsic shape differences and variability. ACM Transactions on Graphics (TOG) 32, 4 (2013), 72.
- [RPWO18] Ren J., Poulenard A., Wonka P., Ovsjanikov M.: Continuous and orientation-preserving correspondences via functional maps. ACM Transactions on Graphics (TOG) 37, 6 (2018).
- [RS80] Reed M., Simon B.: Methods of Modern Mathematical Physics: Functional Analysis; Rev. ed. Academic Press, 1980.
- [Sah20] Sahillioğlu Y.: Recent advances in shape correspondence. The Visual Computer 36, 8 (2020), 1705–1721.
- [SC17] Sawhney R., Crane K.: Boundary first flattening. ACM Transactions on Graphics (ToG) 37, 1 (2017), 1–14.
- [SOG09] Sun J., Ovsjanikov M., Guibas L.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28, 5 (2009), 1383–1392.
- [SSC19] Sharp N., Soliman Y., Crane K.: The vector heat method. ACM Transactions on Graphics 38, 3 (2019).
- [SSP08] Springborn B., Schröder P., Pinkall U.: Conformal equivalence of triangle meshes. In ACM SIGGRAPH 2008 Papers. 2008, pp. 1–11.
- [TSDS10] Tombari F., Salti S., Di Stefano L.: Unique signatures of histograms for local surface description. In Proceedings of ECCV (2010), Springer, pp. 356–369.
- [VKZHCO11] Van Kaick O., Zhang H., Hamarneh G., Cohen-Or D.: A survey on shape correspondence. Computer Graphics Forum 30, 6 (2011), 1681–1707.
- [WLZT18] Wang Y., Liu B., Zhou K., Tong Y.: Vector field map representation for near conformal surface correspondence. Computer Graphics Forum 37, 6 (2018), 72–83.
- [ZKJB17] Zuffi S., Kanazawa A., Jacobs D., Black M. J.: 3D menagerie: Modeling the 3D shape and pose of animals. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017 (Piscataway, NJ, USA, July 2017), IEEE, pp. 5524–5532.