Denoising Deep Monte Carlo Renderings
D. Vicini
Walt Disney Animation Studios, Burbank, USA
Disney Research, Zürich, Switzerland
Search for more papers by this authorD. Vicini
Walt Disney Animation Studios, Burbank, USA
Disney Research, Zürich, Switzerland
Search for more papers by this authorAbstract
We present a novel algorithm to denoise deep Monte Carlo renderings, in which pixels contain multiple colour values, each for a different range of depths. Deep images are a more expressive representation of the scene than conventional flat images. However, since each depth bin receives only a fraction of the flat pixel's samples, denoising the bins is harder due to the less accurate mean and variance estimates. Furthermore, deep images lack a regular structure in depth—the number of depth bins and their depth ranges vary across pixels. This prevents a straightforward application of patch-based distance metrics frequently used to improve the robustness of existing denoising filters. We address these constraints by combining a flat image-space non-local means filter operating on pixel colours with a deep cross-bilateral filter operating on auxiliary features (albedo, normal, etc.). Our approach significantly reduces noise in deep images while preserving their structure. To our best knowledge, our algorithm is the first to enable efficient deep-compositing workflows with denoised Monte Carlo renderings. We demonstrate the performance of our filter on a range of scenes highlighting the challenges and advantages of denoising deep images.
Supporting Information
Filename | Description |
---|---|
cgf13533-sup-0001-SuppMat-web-report.zip55.8 MB | Interactive web viewer |
cgf13533-sup-0002-SuppMat-video.mp47.1 MB | Supplemental Video |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- [BB17] Boughida M., Boubekeur T.: Bayesian collaborative denoising for Monte Carlo rendering. Computer Graphics Forum (Proceedings of EGSR) 36, 4 (2017), 137–153.
10.1111/cgf.13231 Google Scholar
- [BCM05] Buades A., Coll B., Morel J.-M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 2 (2005), 490–530.
- [BEJM15] Bauszat P., Eisemann M., John S., Magnor M.: Sample-based manifold filtering for interactive global illumination and depth of field. Computer Graphics Forum 34, 1 (2015), 265–276.
- [BEM11] Bauszat P., Eisemann M., Magnor M.: Guided image filtering for interactive high-quality global illumination. Computer Graphics Forum 30, 4 (2011), 1361–1368.
- [BRM*16] Bitterli B., Rousselle F., Moon B., Iglesias-Guitián J. A., Adler D., Mitchell K., Jarosz W., Novák J.: Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. Computer Graphics Forum (Proceedings of EGSR) 35, 4 (June 2016), 107–117.
- [BVM*17] Bako S., Vogels T., McWilliams B., Meyer M., Novák J., Harvill A., Sen P., DeRose T., Rousselle F.: Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (2017), 97:1–97:14.
- [CKS*17] Chaitanya C. R. A., Kaplanyan A., Schied C., Salvi M., Lefohn A., Nowrouzezahrai D., Aila T.: Interactive reconstruction of noisy Monte Carlo image sequences using a recurrent autoencoder. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (2017), 98:1–98:12.
- [DL03] Duan J., Li J.: Compression of the layered depth image. IEEE Transactions on Image Processing 12, 3 (March 2003), 365–372.
- [DMB*14] Delbracio M., Musé P., Buades A., Chauvier J., Phelps N., Morel J.-M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Transactions on Graphics 33, 1 (February 2014), 8:1–8:15.
- [EDL15] Egstad J., Davis M., Lacewell D.: Improved deep image compositing using subpixel masks. In Proceedings of Digital Production Symposium (New York, NY, USA, 2015), ACM, pp. 21–27.
- [HHHF12] Hanika J., Hillman P., Hill M., Fascione L.: Camera space volumetric shadows. In Proceedings of Digital Production Symposium (New York, NY, USA, 2012), ACM, pp. 7–14.
10.1145/2370919.2370921 Google Scholar
- [HJW*08] Hachisuka T., Jarosz W., Weistroffer R. P., Dale K., Humphreys G., Zwicker M., Jensen H. W.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Transactions on Graphics 27, 3 (August 2008), 33:1–33:10.
10.1145/1360612.1360632 Google Scholar
- [HWW10] Hillman P., Winquist E., Welford M.: Compositing “avatar”. SIGGRAPH 2010 Talks, 2010.
- [Jak10] Jakob W.: Mitsuba renderer, 2010.
- [KBS15] Kalantari N. K., Bako S., Sen P.: A machine learning approach for filtering Monte Carlo noise. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 34, 4 (July 2015), 122:1–122:12.
- [KBSH13] Kainz F., Bogart R., Stanczyk P., Hillman P.: Technical introduction to OpenEXR, 2013.
- [KN01] Kim T.-Y., Neumann U.: Opacity shadow maps. In Proceedings of Eurographics Workshop on Rendering Techniques (London, UK, 2001), Springer, pp. 177–182.
10.1007/978-3-7091-6242-2_16 Google Scholar
- [LAC*11] Lehtinen J., Aila T., Chen J., Laine S., Durand F.: Temporal light field reconstruction for rendering distribution effects. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 30, 4 (July 2011), 55:1–55:12.
- [LALD12] Lehtinen J., Aila T., Laine S., Durand F.: Reconstructing the indirect light field for global illumination. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012), 51:1–51:10.
- [LV00] Lokovic T., Veach E.: Deep shadow maps. In Annual Conference Series (Proceedings of SIGGRAPH) (New York, NY, USA, 2000), ACM Press/Addison-Wesley Publishing Co., pp. 385–392.
10.1145/344779.344958 Google Scholar
- [LWC12] Li T.-M., Wu Y.-T., Chuang Y.-Y.: Sure-based optimization for adaptive sampling and reconstruction. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (November 2012), 194:1–194:9.
- [Max96] Max N.: Hierarchical rendering of trees from precomputed multi-layer z-buffers. In Proceedings of Eurographics Workshop on Rendering Techniques (London, UK, 1996), Springer, pp. 165–174.
- [MBC*17] Mildenhall B., Barron J. T., Chen J., Sharlet D., Ng R., Carroll R.: Burst denoising with kernel prediction networks. ArXiv e-prints (December 2017).
- [McC99] McCool M. D.: Anisotropic diffusion for Monte Carlo noise reduction. ACM Transactions on Graphics 18, 2 (April 1999), 171–194.
- [MCY14] Moon B., Carr N., Yoon S.-E.: Adaptive rendering based on weighted local regression. ACM Transactions on Graphics 33, 5 (September 2014), 170:1–170:14.
- [MIGMM17] Moon B., Iglesias-Guitian J. A., McDonagh S., Mitchell K.: Noise reduction on g-buffers for Monte Carlo filtering. Computer Graphics Forum 36, (2017), 600–612.
- [MJL*13] Moon B., Jun J. Y., Lee J., Kim K., Hachisuka T., Yoon S.-E.: Robust image denoising using a virtual flash image for Monte Carlo ray tracing. Computer Graphics Forum 32, 1 (2013), 139–151.
- [MKBR04] Mertens T., Kautz J., Bekaert P., Reeth F. V.: A self-shadow algorithm for dynamic hair using density clustering. In Rendering Techniques (Proceedings of EG Symposium on Rendering) (Aire-la-Ville, Switzerland, 2004), Eurographics Association, pp. 173–178.
10.1145/1186223.1186278 Google Scholar
- [MMMG16] Moon B., McDonagh S., Mitchell K., Gross M.: Adaptive polynomial rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 35, (2016), 40:1–40:10.
- [MMNL16] Mara M., McGuire M., Nowrouzezahrai D., Luebke D.: Deep g-buffers for stable global illumination approximation. In HPG (June 2016).
- [NSS10] Nießner M., Schäfer H., Stamminger M.: Fast indirect illumination using layered depth images. The Visual Computer 26, 6–8 (2010), 679–686.
- [ODR09] Overbeck R. S., Donner C., Ramamoorthi R.: Adaptive wavelet rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 28, 5 (2009), 140–141.
- [PJH16] Pharr M., Jakob W., Humphreys G.: Physically Based Rendering: From Theory to Implementation (3rd edition). Morgan Kaufmann Publishers Inc., San Francisco, CA, 2016.
- [RKZ12] Rousselle F., Knaus C., Zwicker M.: Adaptive rendering with non-local means filtering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (November 2012), 195:1–195:11.
- [RMZ13] Rousselle F., Manzi M., Zwicker M.: Robust denoising using feature and color information. Computer Graphics Forum (Proceedings of Pacific Graphics) 32, 7 (2013), 121–130.
- [RW94] Rushmeier H. E., Ward G. J.: Energy preserving non-linear filters. In Annual Conference Series (Proceedings of SIGGRAPH) (New York, NY, USA, 1994), ACM, pp. 131–138.
10.1145/192161.192189 Google Scholar
- [SD12] Sen P., Darabi S.: On filtering the noise from the random parameters in Monte Carlo rendering. ACM Transactions on Graphics 31, 3 (June 2012), 18:1–18:15.
- [Sey14] Seymour M.: The art of deep compositing, 2014.
- [SGHS98] Shade J., Gortler S., He L.-w., Szeliski R.: Layered depth images. In Annual Conference Series (Proceedings of SIGGRAPH) (New York, NY, USA, 1998), ACM, pp. 231–242.
10.1145/280814.280882 Google Scholar
- [YK08] Yuksel C., Keyser J.: Deep opacity maps. Computer Graphics Forum 27, (2008), 675–680.
- [ZJL*15] Zwicker M., Jarosz W., Lehtinen J., Moon B., Ramamoorthi R., Rousselle F., Sen P., Soler C., Yoon S.-E.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum (Proceedings of Eurographics) 34, 2 (May 2015), 667–681.
- [ZRJ*15] Zimmer H., Rousselle F., Jakob W., Wang O., Adler D., Jarosz W., Sorkine-Hornung O., Sorkine-Hornung A.: Path-space motion estimation and decomposition for robust animation filtering. Computer Graphics Forum (Proceedings of EGSR) 34, 4 (June 2015), 131–142.