Volume 38, Issue 1 pp. 316-327
Article

Denoising Deep Monte Carlo Renderings

D. Vicini

D. Vicini

Walt Disney Animation Studios, Burbank, USA

Disney Research, Zürich, Switzerland

Search for more papers by this author
D. Adler

D. Adler

Walt Disney Animation Studios, Burbank, USA

Search for more papers by this author
J. Novák

J. Novák

Disney Research, Zürich, Switzerland

Search for more papers by this author
F. Rousselle

F. Rousselle

Disney Research, Zürich, Switzerland

Search for more papers by this author
B. Burley

B. Burley

Walt Disney Animation Studios, Burbank, USA

Search for more papers by this author
First published: 27 August 2018
Citations: 7

Abstract

We present a novel algorithm to denoise deep Monte Carlo renderings, in which pixels contain multiple colour values, each for a different range of depths. Deep images are a more expressive representation of the scene than conventional flat images. However, since each depth bin receives only a fraction of the flat pixel's samples, denoising the bins is harder due to the less accurate mean and variance estimates. Furthermore, deep images lack a regular structure in depth—the number of depth bins and their depth ranges vary across pixels. This prevents a straightforward application of patch-based distance metrics frequently used to improve the robustness of existing denoising filters. We address these constraints by combining a flat image-space non-local means filter operating on pixel colours with a deep cross-bilateral filter operating on auxiliary features (albedo, normal, etc.). Our approach significantly reduces noise in deep images while preserving their structure. To our best knowledge, our algorithm is the first to enable efficient deep-compositing workflows with denoised Monte Carlo renderings. We demonstrate the performance of our filter on a range of scenes highlighting the challenges and advantages of denoising deep images.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.