An Efficient Solver for Two-way Coupling Rigid Bodies with Incompressible Flow
Mridul Aanjaneya
Department of Computer Science, Rutgers University
Search for more papers by this authorMridul Aanjaneya
Department of Computer Science, Rutgers University
Search for more papers by this authorAbstract
We present an efficient solver for monolithic two-way coupled simulation of rigid bodies with incompressible fluids that is robust to poor conditioning of the coupled system in the presence of large density ratios between the solid and the fluid. Our method leverages ideas from the theory of Domain Decomposition, and uses a hybrid combination of direct and iterative solvers that exploits the low-dimensional nature of the solid equations. We observe that a single Multigrid V-cycle for the fluid equations serves as a very effective preconditioner for solving the Schur-complement system using Conjugate Gradients, which is the main computational bottleneck in our pipeline. We use spectral analysis to give some theoretical insights behind this observation. Our method is simple to implement, is entirely assembly-free besides the solid equations, allows for the use of large time steps because of the monolithic formulation, and remains stable even when the iterative solver is terminated early. We demonstrate the efficacy of our method on several challenging examples of two-way coupled simulation of smoke and water with rigid bodies. To illustrate that our method is applicable to other problems, we also show an example of underwater bubble simulation.
Supporting Information
Filename | Description |
---|---|
cgf13512-sup-0001-S1.mp4158.3 MB | Supplement Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Azevedo V. C., Batty C., Oliveira M. M.: Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM Trans. Graph. 35, 4 (2016), 1–12. 9
- Arash O. E., Gãl'nevaux O., Habibi A., Michel Dischler J.: Simulating fluid-solid interaction. In in Graphics Interface (2003), pp. 31–38. 1
- Aanjaneya M., Gao M., Liu H., Batty C., Sifakis E.: Power diagrams and sparse paged grids for high resolution adaptive liquids. ACM Trans. Graph. 36, 4 (2017), 1–12. 5
- Akinci N., Ihmsen M., Akinci G., Solenthaler B., Teschner M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31, 4 (2012), 62: 1–62:8. 2
- Aanjaneya M., Patkar S., Fedkiw R.: A monolithic mass tracking formulation for bubbles in incompressible flow. Journal of Computational Physics 247 (2013), 17–61. 1, 5
- Adalsteinsson D., Sethian J.: The fast construction of extension velocities in level set methods. Journal of Computational Physics 148, 1 (1999), 2–22. 4
- Batty C., Bertails F., Bridson R.: A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (2007). 1, 2
- Bender J., Erleben K., Trinkle J.: Interactive simulation of rigid body dynamics in computer graphics. Computer Graphics Forum 33, 1 (2014), 246–270. 1
- Bouaziz S., Martin S., Liu T., Kavan L., Pauly M.: Projective dynamics: Fusing constraint projections for fast simulation. ACMTrans. Graph. 33, 4 (2014), 1–11. 1, 9
- Bridson R.: Fluid simulation for computer graphics, 2nd edition. A. K. Peters, Ltd., 2015. 1
- Chentanez N., Goktekin T. G., Feldman B. E., O'Brien J. F.: Simultaneous coupling of fluids and deformable bodies. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2006), SCA ‘06, pp. 83–89. 1, 2
- Carlson M., Mucha P. J., Turk G.: Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3 (2004), 377–384. 2
- Clausen P., Wicke M., Shewchuk J. R., O'Brien J. F.: Simulating liquids and solid-liquid interactions with lagrangian meshes. ACMTrans. Graph. 32, 2 (2013), 1–15. 2
- Chu J., Zafar N. B., Yang X.: A schur complement preconditioner for scalable parallel fluid simulation. ACM Trans. Graph. 36, 5 (2017), 1–11. 1, 2, 3
- De Coninck A., De Baets B., Kourounis D., Verbosio F., Schenk O., Maenhout S., Fostier J.: Needles: Toward large-scale genomic prediction with marker-by-environment interaction. 543–555. 9
- Enright D., Losasso F., Fedkiw R.: A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 6–7 (2005), 479–490. 4
- Enright D., Nguyen D., Gibou F., Fedkiw R.: Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf. (2003). 4
- English R. E., Qiu L., Yu Y., Fedkiw R.: Chimera grids for water simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2013), SCA ‘13, pp. 85–94. 6
- Foster N., Fedkiw R.: Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001 (2001), pp. 23–30. 2
- Foster N., Metaxas D.: Realistic animation of liquids. Graph. Models Image Process. 58, 5 (1996), 471–483. 2
- Feldman B., O'Brien J., Klingner B., Goktekin T.: Fluids in deforming meshes. In Symposium on Computer Animation (2005), SCA ‘05, pp. 255–259. 2
- Goldade R., Batty C.: Constraint bubbles: Adding efficient zero-density bubbles to incompressible free surface flow. CoRR abs/1711.11470 (2017). URL: http://arxiv.org/abs/1711.11470. 5
- Guendelman E., Bridson R., Fedkiw R.: Nonconvex rigid bodies with stacking. ACM TOG 22, 3 (2003), 871–878. 4
- Gao M., Mitchell N., Sifakis E.: Steklov-poincaré skinning. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2014), SCA ‘14, pp. 139–148. 1
- Guendelman E., Selle A., Losasso F., Fedkiw R.: Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3 (2005), 973–981. 1, 2, 4
- Heath M. T.: Scientific Computing, 2 ed. McGraw-Hill, Inc., New York, NY, USA, 2002. 3
- Harlow F. H., Welch J. E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 8, 12 (1965), 2182–2189. 2, 4
- Jiang C., Schroeder C., Selle A., Teran J., Stomakhin A.: The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (2015), 1–10. 2
- Klingner B., Feldman B., Chentanez N., O'Brien J.: Fluid animation with dynamic meshes. In Proc. of ACM SIGGRAPH (2006), SIGGRAPH ‘06, pp. 820–825. 2
- Klár G., Gast T., Pradhana A., Fu C., Schroeder C., Jiang C., Teran J.: Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 35, 4 (2016), 1–12. 2
- Liu T., Bouaziz S., Kavan L.: Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 3 (2017), 1–16. 1, 9
- Losasso F., Fedkiw R., Osher S.: Spatially adaptive techniques for level set methods and incompressible flow. Computers and Fluids 35 (2005), 2006. 4
- Lu W., Jin N., Fedkiw R.: Two-way coupling of fluids to reduced deformable bodies. In Symposium on Computer Animation (2016), SCA ‘16, pp. 67–76. 2
- Liu H., Mitchell N., Aanjaneya M., Sifakis E.: A scalable schur-complement fluids solver for heterogeneous compute platforms. ACM Trans. Graph. 35, 6 (2016), 1–12. 1, 2, 3, 5, 9
- Mitchell N., Doescher M., Sifakis E.: A macroblock optimization for grid-based nonlinear elasticity. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2016), SCA ‘16, pp. 11–19. 1, 3
- Misztal M. K., Erleben K., Bargteil A., Fursund J., Christensen B. B., Bærentzen J. A., Bridson R.: Multiphase flow of immiscible fluids on unstructured moving meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2012), SCA ‘12, pp. 97–106. 2
- Mazhar H., Heyn T., Negrut D., Tasora A.: Using nesterov's method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph. 34, 3 (2015), 1–14. 2
- Macklin M., Müller M., Chentanez N., Kim T.-Y.: Unified particle physics for real-time applications. ACM Trans. Graph. 33, 4 (2014), 1–12. 2
- McAdams A., Sifakis E., Teran J.: A parallel multigrid poisson solver for fluids simulation on large grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2010), SCA ‘10, pp. 65–74. 1, 2, 3, 4, 6, 8
- McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (2011), 1–12. 1, 9
- Narain R., Overby M., Brown G. E.: ADMM ⊇ Projective Dynamics: Fast simulation of general constitutive models. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2016), SCA ‘16, pp. 21–28. 1, 9
- Quarteroni A., Valli A.: Domain decomposition methods for partial differential equations, vol. 10. Clarendon Press, 1999. 1, 3
- Ram D., Gast T., Jiang C., Schroeder C., Stomakhin A., Teran J., Kavehpour P.: A material point method for viscoelastic fluids, foams and sponges. In Symposium on Computer Animation (2015), SCA ‘15, pp. 157–163. 2
- Robinson-Mosher A., Schroeder C., Fedkiw R.: A symmetric positive definite formulation for monolithic fluid structure interaction. J. Comput. Phys. 230, 4 (2011), 1547–1566. 1, 2, 4, 5
- Robinson-Mosher A., Shinar T., Gretarsson J., Su J., Fedkiw R.: Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 3 (2008), 1–9. 1, 2
- Raveendran K., Thuerey N., Wojtan C., Turk G.: Controlling liquids using meshes. In Symposium on Computer Animation (2012), SCA ‘12, pp. 255–264. 1
- Roble D., Zafar N. b., Falt H.: Cartesian grid fluid simulation with irregular boundary voxels. In ACM SIGGRAPH 2005 Sketches (2005), SIGGRAPH ‘05. 2
- Setaluri R., Aanjaneya M., Bauer S., Sifakis E.: Spgrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 6 (2014), 1–12. 1
- Stomakhin A., Schroeder C., Chai L., Teran J., Selle A.: A material point method for snow simulation. ACM Trans. Graph. 32, 4 (2013), 1–10. 2
- Stomakhin A., Schroeder C., Jiang C., Chai L., Teran J., Selle A.: Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 4 (2014), 1–11. 2
- Solenthaler B., Schläfli J., Pajarola R.: A unified particle model for fluid–solid interactions: Research articles. Comput. Animat. Virtual Worlds 18, 1 (2007), 69–82. 2
- Stam J.: Stable fluids. In Proc. of ACM SIGGRAPH (1999), SIGGRAPH ‘99, pp. 121–128. 2, 4
- Teng Y., Levin D. I. W., Kim T.: Eulerian solid-fluid coupling. ACM Trans. Graph. 35, 6 (2016), 1–8. 1, 2
- Trottenberg U., Oosterlee C. W., Schuller A.: Multigrid. Academic Press, 2001. 5
- Weinstein R., Teran J., Fedkiw R.: Dynamic simulation of articulated rigid bodies with contact and collision. IEEE Transactions on Visualization and Computer Graphics 12, 3 (2006), 365–374. 4
- Zhang X., Bridson R.: A pppm fast summation method for fluids and beyond. ACM Trans. Graph. 33, 6 (2014), 1–11. 1
- Zarifi O., Batty C.: A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In Symposium on Computer Animation (2017), pp. 7: 1–7:11. 1, 2
- Zhu Y., Sifakis E., Teran J., Brandt A.: An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans. Graph. 29, 2 (2010), 1–18. 1, 9