Coupled Fluid Density and Motion from Single Views
W. Heidrich
King Abdullah University of Science and Technology, Saudi Arabia
Search for more papers by this authorW. Heidrich
King Abdullah University of Science and Technology, Saudi Arabia
Search for more papers by this authorAbstract
We present a novel method to reconstruct a fluid's 3D density and motion based on just a single sequence of images. This is rendered possible by using powerful physical priors for this strongly under-determined problem. More specifically, we propose a novel strategy to infer density updates strongly coupled to previous and current estimates of the flow motion. Additionally, we employ an accurate discretization and depth-based regularizers to compute stable solutions. Using only one view for the reconstruction reduces the complexity of the capturing setup drastically and could even allow for online video databases or smart-phone videos as inputs. The reconstructed 3D velocity can then be flexibly utilized, e.g., for re-simulation, domain modification or guiding purposes. We will demonstrate the capacity of our method with a series of synthetic test cases and the reconstruction of real smoke plumes captured with a Raspberry Pi camera.
Supporting Information
Filename | Description |
---|---|
cgf13511-sup-0001-S1.m4v157.3 MB | Supplement Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Atcheson B., Ihrke I., Heidrich W., Tevs A., Bradley D., Magnor M., Seidel H.-P.: Time-resolved 3d capture of non-stationary gas flows. In ACM transactions on graphics (TOG) (2008), vol. 27, ACM, p. 132. 2
- Angelidis A., Neyret F., Singh K., Nowrouzezahrai D.: A controllable, fast and stable basis for vortex based smoke simulation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2006), Eurographics Association, pp. 25–32. 2
- Batty C., Bertails F., Bridson R.: A fast variational framework for accurate solid-fluid coupling. In ACM Transactions on Graphics (TOG) (2007), vol. 26, ACM, p. 100. 2
- Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1–122. 4
- Bonev B., Prantl L., Thuerey N.: Pre-computed liquid spaces with generative neural networks and optical flow. arXiv preprint arXiv:1704.07854 (2017). 3
- Chen D., Li W., Hall P.: Dense motion estimation for smoke. In Asian Conference on Computer Vision (2016), Springer, pp. 225–239. 2
- Corpetti T., Mémin É., Perez P.: Dense estimation of fluid flows. IEEE Transactions on pattern analysis and machine intelligence 24, 3 (2002), 365–380. 2
- Chambolle A., Pock T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision 40, 1 (2011), 120–145. 3, 4
- Elsinga G. E., Scarano F., Wieneke B., van Oudheusden B. W.: Tomographic particle image velocimetry. Experiments in fluids 41, 6 (2006), 933–947. 2
- Foster N., Fedkiw R.: Practical animation of liquids. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001), ACM, pp. 23–30. 2
- Fedkiw R., Stam J., Jensen H. W.: Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001), ACM, pp. 15–22.
- Gregson J., Ihrke I., Thuerey N., Heidrich W.: From capture to simulation: connecting forward and inverse problems in fluids. ACM Transactions on Graphics (TOG) 33, 4 (2014), 139. 1, 2, 3, 6, 8, 10
- Gregson J., Krimerman M., Hullin M. B., Heidrich W.: Stochastic tomography and its applications in 3d imaging of mixing fluids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 52–1. 2
- Golas A., Narain R., Sewall J., Krajcevski P., Dubey P., Lin M.: Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Transactions on Graphics (TOG) 31, 6 (2012), 148. 2
- Heide F., Diamond S., Niessner M., Ragan-Kelley J., Heidrich W., Wetzstein G.: Proximal: Efficient image optimization using proximal algorithms. ACM Transactions on Graphics (TOG) 35, 4 (2016), 84. 3
- Horn B. K., Schunck B. G.: Determining optical flow. Artificial intelligence 17, 1–3 (1981), 185–203. 2
- Harlow F. H., Welch J. E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The physics of fluids 8, 12 (1965), 2182–2189. 6
- Inglis T., Eckert M.-L., Gregson J., Thuerey N.: Primal-dual optimization for fluids. In Computer Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 354–368. 3, 4
- Ihrke I., Magnor M.: Image-based tomographic reconstruction of flames. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2004), Eurographics Association, pp. 365–373. 1, 2
- Ihrke I., Magnor M.: Adaptive grid optical tomography. Graphical Models 68, 5–6 (2006), 484–495. 2
- Ihmsen M., Orthmann J., Solenthaler B., Kolb A., Teschner M.: SPH fluids in computer graphics. The Eurographics Association. 2
- Kim B., Liu Y., Llamas I., Rossignac J.: FlowFixer: Using BFECC for Fluid Simulation. In Proceedings of the First Eurographics conference on Natural Phenomena (2005), pp. 51–56.
- Kak A. C., Slaney M.: Principles of Computerized Tomographic Imaging. IEEE Press, 1988. 2
- Kim T., Thürey N., James D., Gross M.: Wavelet turbulence for fluid simulation. In ACM Transactions on Graphics (TOG) (2008), vol. 27, ACM, p. 50. 2
- Lintu A., Lensch H. P., Magnor M. A., El-Abed S., Seidel H.-P.: 3d reconstruction of emission and absorption in planetary nebulae. In Volume Graphics (2007), pp. 9–16. 2
- Müller M., Charypar D., Gross M.: Particle-based Fluid Simulation for Interactive Applications. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2003), pp. 154–159. 2
- Morris N. J., Kutulakos K. N.: Dynamic refraction stereo. Vol. 33, IEEE, pp. 1518–1531. 2
- Meinhardt-Llopis E., Pérez J. S., Kondermann D.: Horn-schunck optical flow with a multi-scale strategy. Image Processing on line 2013 (2013), 151–172. 5
10.5201/ipol.2013.20 Google Scholar
- McNamara A., Treuille A., Popović Z., Stam J.: Fluid control using the adjoint method. ACM Transactions On Graphics (TOG) 23, 3 (2004), 449–456. 2
- Narain R., Overby M., Brown G. E.: ADMM ⊇ projective dynamics: Fast simulation of general constitutive models. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2016), pp. 21–28. 3
- Narain R., Sewall J., Carlson M., Lin M. C.: Fast animation of turbulence using energy transport and procedural synthesis. In ACM Transactions on Graphics (TOG) (2008), vol. 27, ACM, p. 166. 2
- Okabe M., Dobashi Y., Anjyo K., Onai R.: Fluid volume modeling from sparse multi-view images by appearance transfer. ACM Transactions on Graphics (TOG) 34, 4 (2015), 93. 2, 8
- Parikh N., Boyd S., et al.: Proximal algorithms. Foundations and Trends® in Optimization 1, 3 (2014), 127–239. 3
10.1561/2400000003 Google Scholar
- Pan Z., Huang J., Tong Y., Zheng C., Bao H.: Interactive localized liquid motion editing. ACM Transactions on Graphics (TOG) 32, 6 (2013), 184. 2
- Pfaff T., Thuerey N., Cohen J., Tariq S., Gross M.: Scalable fluid simulation using anisotropic turbulence particles. vol. 29, ACM, p. 174. 2
- Selle A., Fedkiw R., Kim B., Liu Y., Rossignac J.: An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 2–3 (2008), 350–371. 2
- Selle A., Rasmussen N., Fedkiw R.: A vortex particle method for smoke, water and explosions. In ACM Transactions on Graphics (TOG) (2005), vol. 24, ACM, pp. 910–914. 2
- Stam J.: Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (1999), ACM Press/Addison-Wesley Publishing Co., pp. 121–128. 2
- Thuerey N.: Interpolations of smoke and liquid simulations. ACM Transactions on Graphics (TOG) 36, 1 (2017), 3. 3
- Wedel A., Cremers D.: Stereoscopic scene flow for 3d motion analysis, 2011. 4
- Wenger S., Lorenz D., Magnor M.: Fast image-based modeling of astronomical nebulae. In Computer Graphics Forum (2013), vol. 32, Wiley Online Library, pp. 93–100. 2
- Wang H., Liao M., Zhang Q., Yang R., Turk G.: Physically guided liquid surface modeling from videos. ACM Transactions on Graphics (TOG) 28, 3 (2009), 90. 2
- Xiong J., Idoughi R., Aguirre-Pablo A. A., Aljedaani A. B., Dun X., Fu Q., Thoroddsen S. T., Heidrich W.: Rainbow particle imaging velocimetry for dense 3d fluid velocity imaging. ACM Transactions on Graphics (TOG) 36, 4 (2017), 36. 2, 3
- Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics (TOG) 24, 3 (2005), 965–972. 2