Applying Visual Analytics to Physically Based Rendering
Abstract
Physically based rendering is a well-understood technique to produce realistic-looking images. However, different algorithms exist for efficiency reasons, which work well in certain cases but fail or produce rendering artefacts in others. Few tools allow a user to gain insight into the algorithmic processes. In this work, we present such a tool, which combines techniques from information visualization and visual analytics with physically based rendering. It consists of an interactive parallel coordinates plot, with a built-in sampling-based data reduction technique to visualize the attributes associated with each light sample. Two-dimensional (2D) and three-dimensional (3D) heat maps depict any desired property of the rendering process. An interactively rendered 3D view of the scene displays animated light paths based on the user's selection to gain further insight into the rendering process. The provided interactivity enables the user to guide the rendering process for more efficiency. To show its usefulness, we present several applications based on our tool. This includes differential light transport visualization to optimize light setup in a scene, finding the causes of and resolving rendering artefacts, such as fireflies, as well as a path length contribution histogram to evaluate the efficiency of different Monte Carlo estimators.
References
- [CPC84] Cook R. L., Porter T., Carpenter L.: Distributed ray tracing. SIGGRAPH Computer Graphics 18, 3 (1984), 137–145.
10.1145/964965.808590 Google Scholar
- [CWW11] Chajdas M. G., Weis A., Westermann R.: Assisted environment map probe placement. In Proceedings of SIGGRAD (Linköping, Sweden, 2011), Linköping University Electronic Press, pp. 17–25.
- [DHS*05] Durand F., Holzschuch N., Soler C., Chan E., Sillion F. X.: A frequency analysis of light transport. ACM Transactions on Graphics 24, 3 (2005), 1115–1126.
- [ED07] Ellis G., Dix A.: A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1216–1223.
- [GFE*12] Gribble C., Fisher J., Eby D., Quigley E., Ludwig G.: Ray tracing visualization toolkit. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (New York, NY, USA, 2012), ACM, pp. 71–78.
10.1145/2159616.2159628 Google Scholar
- [HEV*16] Herholz S., Elek O., Vorba J., Lensch H., Křivánek J.: Product importance sampling for light transport path guiding. Computer Graphics Forum 35, 4 (2016), 67–77.
- [HLD02] Hauser H., Ledermann F., Doleisch H.: Angular brushing of extended parallel coordinates. In Proceedings of IEEE Symposium on Information Visualization (INFOVIS) (2002), IEEE Computer Society, pp. 127–130.
10.1109/INFVIS.2002.1173157 Google Scholar
- [HvW09] Holten D., van Wijk J. J.: Force-directed edge bundling for graph visualization. Computer Graphics Forum 28, 3 (2009), 983–990.
- [HW09] Heinrich J., Weiskopf D.: Continuous parallel coordinates. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1531–1538.
- [HW13] Heinrich J., Weiskopf D.: State of the art of parallel coordinates. In Eurographics 2013 - State of the Art Reports (2013), M. Sbert and L. Szirmay-Kalos (Eds.), The Eurographics Association, pp. 95–116.
- [ID91] Inselberg A., Dimsdale B.: Parallel coordinates. In Human-Machine Interactive Systems. A. Klinger (Ed.). Springer, Boston, MA (1991), pp. 199–233.
10.1007/978-1-4684-5883-1_9 Google Scholar
- [Kaj86] Kajiya J. T.: The rendering equation. ACM SIGGRAPH Computer Graphics 20, 4 (1986), 143–150.
10.1145/15886.15902 Google Scholar
- [KKG*14] Křivánek J., Keller A., Georgiev I., Kaplanyan A. S., Fajardo M., Meyer M., Nahmias J.-D., Karlík O., Cañada J.: Recent advances in light transport simulation: Some theory and a lot of practice. In ACM SIGGRAPH 2014 Courses (2014), pp. 17:1–17:6.
- [LK11] Laine S., Karras T.: Efficient sparse voxel octrees. IEEE Transactions on Visualization and Computer Graphics 17, 8 (2011), 1048–1059.
- [LP14] Lesev H., Penev A.: A framework for visual dynamic analysis of ray tracing algorithms. Cybernetics and Information Technologies 14, 2 (2014), 38–49.
10.2478/cait-2014-0018 Google Scholar
- [LTH*13] Luksch C., Tobler R. F., Habel R., Schw”arzler M., Wimmer M.: Fast light-map computation with virtual polygon lights. In Proceedings of ACM Symposium on Interactive 3D Graphics and Games 2013 (2013), ACM, pp. 87–94.
10.1145/2448196.2448210 Google Scholar
- [MGN17] Müller T., Gross M., Novák J.: Practical path guiding for efficient light-transport simulation. Computer Graphics Forum 36, 4 (June2017), 91–100.
- [MW91] Miller J. J., Wegman E. J.: Construction of line densities for parallel coordinate plots. In Computing and Graphics in Statistics. A. Buja and P. A. Tukey (Eds.). Springer-Verlag, New York (1991), pp. 107–123.
10.1007/978-1-4613-9154-8_8 Google Scholar
- [PBO*14] Palmas G., Bachynskyi M., Oulasvirta A., Seidel H. P., Weinkauf T.: An edge-bundling layout for interactive parallel coordinates. In Proceedings of the 2014 IEEE Pacific Visualization Symposium (Yokohama, Japan, 2014), IEEE Computer Society, pp. 57–64.
10.1109/PacificVis.2014.40 Google Scholar
- [PH10] Pharr M., Humphreys G.: Physically Based Rendering, Second Edition: From Theory to Implementation (2nd edition). Morgan Kaufmann Publishers Inc., Burlington, MA, 2010.
- [PP03] Patow G., Pueyo X.: A survey of inverse rendering problems. Computer Graphics Forum 22, 4 (2003), 663–687.
- [REB*15] Raidou R., Eisemann M., Breeuwer M., Eisemann E., Vilanova A.: Orientation-enhanced parallel coordinate plots. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2015), 589–598.
- [Rel] Relux Informatik AG: Reluxsuite. http://www.relux.info/. Accessed 27 November 2015.
- [RKRD12] Reiner T., Kaplanyan A., Reinhard M., Dachsbacher C.: Selective inspection and interactive visualization of light transport in virtual scenes. Computer Graphics Forum 31, 2 (2012), 711–718.
- [Rus99] Russel J. A.: An Interactive Web-Based Ray Tracing Visualization tool. Master's thesis, University of Washington, 1999.
- [SAH*16] Simons G., Ament M., Herholz S., Dachsbacher c., Eisemann M., Eisemann E.: An interactive information visualization approach to physically-based rendering. In Proceedings of the Vision, Modeling, and Visualization Workshop (Bayreuth, Germany, 2016), pp. 1–8.
- [SJL15] Spencer B., Jones M. W., Lim I. S.: A visualization tool used to develop new photon mapping techniques. Computer Graphics Forum 34, 1 (2015), 127–140.
- [SNM*13] Schmidt T.-W., Novak J., Meng J., Kaplanyan A. S., Reiner T., Nowrouzezahrai D., Dachsbacher C.: Path-space manipulation of physically-based light transport. ACM Transactions On Graphics 32, 4 (2013), 129.
- [SOL*16] Sorger J., Ortner T., Luksch C., Schwärzler M., Gröller E., Piringer H.: Litevis: Integrated visualization for simulation-based decision support in lighting design. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016), 290–299.
- [TM04] Tory, M., Möller, T.: Rethinking visualization: A high-level taxonomy. In Proceedings of the IEEE Symposium on Information Visualization (Austin, Texas, 2004), pp. 151–158.
10.1109/INFVIS.2004.59 Google Scholar
- [Vea97] Veach E.: Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University, 1997.
- [VG97] Veach E., Guibas L. J.: Metropolis light transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA, 1997), SIGGRAPH '97, ACM Press/Addison-Wesley Publishing Co., pp. 65–76.
10.1145/258734.258775 Google Scholar
- [VKv*14] Vorba J., Karlík O., Šik M., Ritschel T., Křivánek J.: On-line learning of parametric mixture models for light transport simulation. ACM Transactions on Graphics 33, 4 (2014), 101:1–101:11.
- [War94] Ward M. O.: Xmdvtool: Integrating multiple methods for visualizing multivariate data. In Proceedings of the Conference on Visualization'94 (Los Alamitos, CA, USA, 1994), IEEE Computer Society Press, pp. 326–333.
10.1109/VISUAL.1994.346302 Google Scholar
- [WBSS04] Wang Z., Bovik A., Sheikh H., Simoncelli E.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612.
- [WFWB13] Woop S., Feng L., Wald I., Benthin C.: Embree ray tracing kernels for CPUs and the Xeon Phi architecture. In ACM SIGGRAPH 2013 Talks (2013), pp. 44:1–44:1.
- [ZAD15] Zirr T., Ament M., Dachsbacher C.: Visualization of coherent structures of light transport. Computer Graphics Forum 34, 3 (2015), 491–500.