Shape-from-Operator: Recovering Shapes from Intrinsic Operators
Davide Boscaini
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorDavide Eynard
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorDrosos Kourounis
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorMichael M. Bronstein
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorDavide Boscaini
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorDavide Eynard
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorDrosos Kourounis
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorMichael M. Bronstein
Università della Svizzera Italiana (USI), Lugano, Switzerland
Search for more papers by this authorAbstract
We formulate the problem of shape-from-operator (SfO), recovering an embedding of a mesh from intrinsic operators defined through the discrete metric (edge lengths). Particularly interesting instances of our SfO problem include: shape-from-Laplacian, allowing to transfer style between shapes; shape-from-difference operator, used to synthesize shape analogies; and shape-from-eigenvectors, allowing to generate ‘intrinsic averages’ of shape collections. Numerically, we approach the SfO problem by splitting it into two optimization sub-problems: metric-from-operator (reconstruction of the discrete metric from the intrinsic operator) and embedding-from-metric (finding a shape embedding that would realize a given metric, a setting of the multidimensional scaling problem). We study numerical properties of our problem, exemplify it on several applications, and discuss its imitations.
References
- Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. CGF 32, 5 (2013), 73–82. 2
- Alhashim I., Li H., Xu K., Cao J., Ma R., Zhang H.: Topology-varying 3D shape creation via structural blending. TOG 33, 4 (2014). 2
- Bronstein A.M., Bronstein M.M., Kimmel R.: Numerical Geometry of Non-Rigid Shapes. Springer, 2008. 6
- Ben-Chen M., Gotsman C., Bunin G.: Conformal flattening by curvature prescription and metric scaling. In CGF (2008), vol. 27, pp. 449–458. 2
- Borg I., Groenen P.J.: Modern multidimensional scaling: Theory and applications. Springer, 2005. 2, 5, 6
- Bronstein M.M., Glashoff K., Loring T.A.: Making Laplacians commute. arXiv:1307.6549 (2013). 2
- Bohan A., O'Donoghue D.: LUDI: A model for geometric analogies using attribute matching. In Proc. AICS (2000). 1
- Bogo F., Romero J., Loper M., Black M.J.: FAUST: Dataset and evaluation for 3D mesh registration. In Proc. CVPR (2014). 6
- Baran I., Vlasic D., Grinspun E., Popović J.: Semantic deformation transfer. TOG 28, 3 (2009), 36. 2
- Clarke L., Chen M., Mora B.: Automatic generation of 3D caricatures based on artistic deformation styles. TVCG 17, 6 (June 2011), 808–821. 2
- Crane K., Pinkall U., Schröder P.: Spin transformations of discrete surfaces. TOG 30, 4 (2011), 104. 2
10.1145/2010324.1964999 Google Scholar
- de Goes F., Memari P., Mullen P., Desbrun M.: Weighted triangulation for geometry processing. TOG (2014). 2, 4, 5
- Eynard D., Kovnatsky A., Bronstein M.M.: Laplacian colormaps: a framework for structure-preserving color transformations. CGF 33, 2 (2014), 215–224. 2
- Hertzmann A., Jacobs C.E., Oliver N., Curless B., Salesin D.H.: Image analogies. In Proc. Computer Graphics and Interactive Techniques (2001). 2
- Isenburg M., Gumhold S., Gotsman C.: Connectivity shapes. In Proc. Visualization (2001). 2
- Ikeuchi K., Horn B. K. P.: Numerical shape from shading and occluding boundaries. Artificial Intelligence 17, 1-3 (1981), 141–184. 2
- Ikeuchi K.: Shape from regular patterns. Artificial Intelligence 22, 1 (1984), 49–75. 2
- Jacobson A., Sorkine O.: A Cotangent Laplacian for Images as Surfaces. Tech. Rep. 757, ETH Zurich, 2012. 3
- Kanatani K.-I.: Structure from motion without correspondence: General principle. In Proc. IJCAI (1985). 2
- Kovnatsky A., Bronstein M.M., Bronstein A.M., Glashoff K., Kimmel R.: Coupled quasi-harmonic bases. CGF 32 (2013), 439–448. 5, 7
- Kircher S., Garland M.: Free-form motion processing. TOG 27, 2 (2008), 12. 2
- Karpenko O.A., Hughes J.F.: Smoothsketch: 3D free-form shapes from complex sketches. TOG 25, 3 (2006), 589–598. 2
- Litman R., Bronstein A.M., Bronstein M.M.: Diffusion-geometric maximally stable component detection in deformable shapes. Computers & Graphics 35, 3 (2011), 549–560. 4
- Leeuw J.D.: Applications of convex analysis to multidimensional scaling. In Recent Developments in Statistics (1977), pp. 133–146. 5
- Lipman Y., Sorkine O., Levin D., Cohen-Or D.: Linear rotation-invariant coordinates for meshes. TOG 24, 3 (2005), 479–487. 2
- Lewiner T., Vieira T., Martínez D., Peixoto A., Mello V., Velho L.: Interactive 3D caricature from harmonic exaggeration. Computers & Graphics 35, 3 (2011), 586–595. 2
- Meyer M., Desbrun M., Schröder P., Barr A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Visualization&Mathematics (2003), 35–57. 3
- Ma C., Huang H., Sheffer A., Kalogerakis E., Wang R.: Analogy-Driven 3D Style Transfer. CGF 33, 2 (2014), 175–184. 2
- Mitra N., Wand M., Zhang H.R., Cohen-Or D., Kim V., Huang Q.-X.: Structure-aware shape processing. In SIGGRAPH Asia 2013 Courses (2013). 2
- Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: A flexible representation of maps between shapes. TOG 31, 4 (2012). 2, 4
- Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1 (1993), 15–36. 3
10.1080/10586458.1993.10504266 Google Scholar
- Panozzo D., Puppo E., Tarini M., Sorkine-Hornung O.: Frame fields: Anisotropic and non-orthogonal cross fields. TOG 33, 4 (2014), 134. 2
- Rong G., Cao Y., Guo X.: Spectral mesh deformation. Visual Computer 24, 7 (2008), 787–796. 2
- Rustamov R.M., Ovsjanikov M., Azencot O., Ben-Chen M., Chazal F., Guibas L.: Map-based exploration of intrinsic shape differences and variability. TOG 32, 4 (2013), 1–12. 1, 2, 4, 6
- Rosenberg S.: The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds. No. 31. Cambridge university Press, 1997. 2
10.1017/CBO9780511623783 Google Scholar
- Sorkine O., Cohen-Or D., Lipman Y., Alexa M., Rössl C., Seidel H.-P.: Laplacian surface editing. In Proc. SGP (2004). 2
- Sheffer A., de Sturler E.: Parameterization of faceted surfaces for meshing using angle-based flattening. Engineering with Computers 17, 3 (2001), 326–337. 2
- Sun J., Ovsjanikov M., Guibas L.: A concise and provably informative multi-scale signature based on heat diffusion. CGF 28, 5 (2009), 1383–1392. 4
- Sumner R.W., Popović J.: Deformation transfer for triangle meshes. TOG 23, 3 (2004), 399–405. 2
- Wächter A., Biegler L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale ***non-linear programming. Mathematical Programming 106, 1 (2006), 25–57. 6
- Welnicka K., Bærentzen J., Aanæs H., Larsen R.: Descriptor Based Classification of Shapes in Terms of Style and Function. IMM Tech. Report. 2011. 2
- Witkin A.P.: Shape from contour. PhD thesis, MIT, 1980. 2
- Wang Y., Liu B., Tong Y.: Linear surface reconstruction from discrete fundamental forms on triangle meshes. CGF 31, 8 (2012), 2277–2287. 2
- Woodham R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 1 (1980), 139–144. 2
- Xu K., Li H., Zhang H., Cohen-Or D., Xiong Y., Cheng Z.-Q.: Style-content separation by anisotropic part scales. In TOG (2010), vol. 29, p. 184. 2
10.1145/1882261.1866206 Google Scholar
- Zeng W., Guo R., Luo F., Gu X.: Discrete heat kernel determines discrete Riemannian metric. Graphical Models 74, 4 (2012), 121–129. 2, 3, 5