The Nuclear Envelope Proteins Esc1 and Mps3 Differentially Impact Sterol Gradients in Budding Yeast
Maria Laura Sosa Ponce
Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
Search for more papers by this authorRoxana Valdés Núñez
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorAndrew Henderson
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorSuriakarthiga Ganesan
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorColton M. Unger
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorCorresponding Author
Jennifer A. Cobb
Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
Search for more papers by this authorCorresponding Author
Vanina Zaremberg
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorMaria Laura Sosa Ponce
Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
Search for more papers by this authorRoxana Valdés Núñez
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorAndrew Henderson
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorSuriakarthiga Ganesan
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorColton M. Unger
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorCorresponding Author
Jennifer A. Cobb
Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
Search for more papers by this authorCorresponding Author
Vanina Zaremberg
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
Search for more papers by this authorFunding: This work was supported by a Discovery Grant and a Discovery Accelerator Supplement from the Natural Sciences and Engineering Research Council of Canada (NSERC) 2023-04320 and Alberta Innovates 242506270 to V. Zaremberg and by operating grants from Canadian Institutes of Health Research MOP-82736, MOP-137062, and NSERC 418122 awarded to J. A. Cobb.
ABSTRACT
The metabolically stable lysolipid analogue edelfosine is an antitumor/antiparasitic drug proposed to act by disrupting lipid rafts and reducing the accessible sterol pool at the plasma membrane (PM). Once internalized, edelfosine also induces deformation of the nuclear envelope (NE) and disrupts telomere clustering in yeast. In this study we investigate the impact that NE-chromatin-anchoring pathways have on PM and NE/ER sterol homeostasis. Cells lacking Sir4 (sir4Δ) of the Silent Information Regulator histone deacetylase complex are resistant to edelfosine despite NE deformation induced by the drug. Using live fluorescence microscopy, we show herein that in sir4Δ yeast sterols remain accessible at the PM and redistribute from the PM of daughter cells to the PM of mother cells in response to edelfosine. Since Sir4 is the scaffold component of the SIR complex that mediates telomere anchoring to the NE, we questioned if its interactors at the NE, Esc1, and Mps3, could also impact sterol mobilization in response to edelfosine. Cells lacking Esc1 mimicked the phenotypes of sir4Δ yeast in response to edelfosine. Unlike sir4Δ and esc1Δ yeast, cells carrying a truncated Mps3 unable to bind Sir4, mps3Δ65-145, displayed aberrant NE morphology, intracellular sterol punctate and sensitivity to edelfosine. Furthermore, significative differences in squalene to sterol esters ratios between esc1Δ and mps3Δ65-145 mutants were found. Altogether these results support a differential contribution of Esc1 and Mps3 to sterol homeostasis and establishment of its intracellular gradient. The Sir4-Esc1 interaction sensitizes cells to lysolipid toxicity and sterol transport from the PM, while Mps3 has a stronger influence on silencing and sterol retention capacity at the PM.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data reported in this article are available in the published article and its online supplemental material. Strains are available from the corresponding author upon request.
Supporting Information
Filename | Description |
---|---|
boc70024-sup-0001-figureS1.tif739.7 KB | Supporting Information Figure 1: Supplementary Figure 1 – Sterol puncta co-localize with endocytic compartments. Representative images of wild type or mutant cells expressing the GFPALOD4 sterol sensor were pulse-chased with the endocytic/vacuolar marker FM4-64 as described in M&M, and imaged at 10 (A) or 30 (B) minutes of internalization. Arrows indicate sites of FM4-64 and ALOD4 co-localization. Scale bar represents 2 µm. |
boc70024-sup-0002-tableS1.docx15.4 KB | Supporting Information Table 1: boc70024-sup-0002-tableS1.docx |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alvarez, F. J., L. M. Douglas, and J. B. Konopka. 2007. “Sterol-Rich Plasma Membrane Domains in Fungi.” Eukaryotic Cell 6, no. 5: 755–763. https://doi.org/10.1128/EC.00008-07/ASSET/7ECE127E-CFC9-422C-A9DB-C3042EF87FDB/ASSETS/GRAPHIC/ZEK0050728780002.JPEG.
- Andrulis, E. D., A. M. Neiman, D. C. Zappulla, and R. Sternglanz. 1998. “Perinuclear Localization of Chromatin Facilitates Transcriptional Silencing.” Nature 394, no. 6693: 592–595. https://doi.org/10.1038/29100.
- Andrulis, E. D., D. C. Zappulla, A. Ansari, et al. 2002. “Esc1, a Nuclear Periphery Protein Required for Sir4-Based Plasmid Anchoring and Partitioning.” Molecular and Cellular Biology 22, no. 23: 8292–8301. https://doi.org/10.1128/MCB.22.23.8292-8301.2002.
- Antoniacci, L. M., M. Kenna, and R. V. Skibbens. 2007. “The Nuclear Envelope and Spindle Pole Body-Associated Mps3 Protein Bind Telomere Regulators and Function in Telomere Clustering.” Cell Cycle 6, no. 1: 75–79. https://doi.org/10.4161/cc.6.1.3647.
- Barger, S. R., L. Penfield, and S. Bahmanyar. 2022. “Coupling Lipid Synthesis With Nuclear Envelope Remodeling.” Trends in Biochemical Sciences 47, no. 1: 52–65. https://doi.org/10.1016/J.TIBS.2021.08.009.
- Baumann, N. A., D. P. Sullivan, H. Ohvo-Rekilä, et al. 2005. “Transport of Newly Synthesized Sterol to the Sterol-Enriched Plasma Membrane Occurs via Nonvesicular Equilibration.” Biochemistry 44, no. 15: 5816–5826. https://doi.org/10.1021/bi048296z.
- Bommi, J. R., H. B. D. P. Rao, K. Challa, et al. 2019. “Meiosis-Specific Cohesin Component, Rec8, Promotes the Localization of Mps3 SUN Domain Protein on the Nuclear Envelope.” Genes to Cells 24, no. 1: 94–106. https://doi.org/10.1111/gtc.12653.
- Borra, M. T., M. R. Langer, J. T. Slama, and J. M. Denu. 2004. “Substrate Specificity and Kinetic Mechanism of the Sir2 Family of NAD+-Dependent Histone/Protein Deacetylases.” Biochemistry 43, no. 30: 9877–9887. https://doi.org/10.1021/BI049592E.
- Brachmann, C. B., J. M. Sherman, S. E. Devine, E. E. Cameron, L. Pillus, and J. D. Boeke. 1995. “The SIR2 Gene Family, Conserved From Bacteria to Humans, Functions in Silencing, Cell Cycle Progression, and Chromosome Stability.” Genes & Development 9, no. 23: 2888–2902. https://doi.org/10.1101/GAD.9.23.2888.
- Bupp, J. M., A. E. Martin, E. S. Stensrud, and S. L. Jaspersen. 2007. “Telomere Anchoring at the Nuclear Periphery Requires the Budding Yeast Sad1-UNC-84 Domain Protein Mps3.” Journal of Cell Biology 179, no. 5: 845–854. https://doi.org/10.1083/jcb.200706040.
- Castro, I. G., S. P. Shortill, S. K. Dziurdzik, et al. 2022. “Systematic Analysis of Membrane Contact Sites in Saccharomyces cerevisiae Uncovers Modulators of Cellular Lipid Distribution.” Elife 11: e74602. https://doi.org/10.7554/ELIFE.74602.
- Chan, J. N. Y., B. P. K. Poon, J. Salvi, J. B. Olsen, A. Emili, and K. Mekhail. 2011. “Perinuclear Cohibin Complexes Maintain Replicative Life Span via Roles at Distinct Silent Chromatin Domains.” Developmental Cell 20, no. 6: 867–879. https://doi.org/10.1016/J.DEVCEL.2011.05.014.
- Chauhan, N., and G. D. Fairn. 2021. “Anisotropy of Plasmalemmal Sterols and Cell Mating Require StARkin Domain Proteins Ysp2 and Lam4.” BioRxiv 2021.09.30.462584. https://doi.org/10.1101/2021.09.30.462584.
- Chen, Y., R. Rai, Z. R. Zhou, et al. 2011. “A Conserved Motif Within RAP1 Plays Diversified Roles in Telomere Protection and Regulation in Different Organisms.” Nature Structural & Molecular Biology 18, no. 2: 213–221. https://doi.org/10.1038/NSMB.1974.
- Choudhry, S. K., M. L. Neal, S. Li, et al. 2023. “Nuclear Pore Complexes Mediate Subtelomeric Gene Silencing by Regulating PCNA Levels on Chromatin.” Journal of Cell Biology 222, no. 9: e202207060. https://doi.org/10.1083/jcb.202207060.
- Cubizolles, F., F. Martino, S. Perrod, and S. M. Gasser. 2006. “A Homotrimer–Heterotrimer Switch in Sir2 Structure Differentiates rDNA and Telomeric Silencing.” Molecular Cell 21, no. 6: 825–836. https://doi.org/10.1016/J.MOLCEL.2006.02.006.
- Cuesta-Marbán, Á., J. Botet, O. Czyz, et al. 2013. “Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast.” Journal of Biological Chemistry 288, no. 12: 8405–8418. https://doi.org/10.1074/jbc.M112.425769.
- Czyz, O., T. Bitew, A. Cuesta-Marbán, C. R. McMaster, F. Mollinedo, and V. Zaremberg. 2013. “Alteration of Plasma Membrane Organization by an Anticancer Lysophosphatidylcholine Analogue Induces Intracellular Acidification and Internalization of Plasma Membrane Transporters in Yeast.” Journal of Biological Chemistry 288, no. 12: 8419–8432. https://doi.org/10.1074/jbc.M112.425744.
- Encinar Del Dedo, J., I. M. Fernández-Golbano, L. Pastor, et al. 2021. “Coupled Sterol Synthesis and Transport Machineries at ER-Endocytic Contact Sites.” Journal of Cell Biology 220, no. 10: e202010016. https://doi.org/10.1083/jcb.202010016.
- Friederichs, J. M., S. Ghosh, C. J. Smoyer, et al. 2011. “The SUN Protein Mps3 Is Required for Spindle Pole Body Insertion Into the Nuclear Membrane and Nuclear Envelope Homeostasis.” PLoS Genetics 7, no. 11: e1002365. https://doi.org/10.1371/journal.pgen.1002365.
- Gardner, J. M., C. J. Smoyer, E. S. Stensrud, et al. 2011. “Targeting of the SUN Protein Mps3 to the Inner Nuclear Membrane by the Histone Variant H2A.Z.” Journal of Cell Biology 193, no. 3: 489–507. https://doi.org/10.1083/jcb.201011017.
- Gartenberg, M. R., and J. S. Smith. 2016. “The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.” Genetics 203, no. 4: 1563–1599. https://doi.org/10.1534/genetics.112.145243.
- Georgiev, A. G., D. P. Sullivan, M. C. Kersting, J. S. Dittman, C. T. Beh, and A. K. Menon. 2011. “Osh Proteins Regulate Membrane Sterol Organization but Are Not Required for Sterol Movement Between the ER and PM.” Traffic (Copenhagen, Denmark) 12, no. 10: 1341–1355. https://doi.org/10.1111/j.1600-0854.2011.01234.x.
- Gotta, M., T. Laroche, A. Formenton, L. Maillet, H. Scherthan, and S. M. Gasser. 1996. “The Clustering of Telomeres and Colocalization With Rap1, Sir3, and Sir4 Proteins in Wild-Type Saccharomyces cerevisiae.” Journal of Cell Biology 134, no. 6: 1349–1363. http://www.ncbi.nlm.nih.gov/pubmed/8830766.
- Gottschling, D., O. Aparicio, B. Billington, and V. Zakian. 1990. “Position Effect at S. cerevisiae Telomeres: Reversible Repression of Pol II Transcription.” Cell 63, no. 4: 751–762. https://doi.org/10.1016/0092-8674(90)90141-Z.
- Guthrie, C., and G. R. Fink. 1991. Guide to Yeast Genetics and Molecular Biology. Academic Press.
- Hediger, F., F. R. Neumann, G. Van Houwe, K. Dubrana, and S. M. Gasser. 2002. “Live Imaging of Telomeres: yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast.” Current Biology 12, no. 24: 2076–2089. https://doi.org/10.1016/S0960-9822(02)01338-6.
- Hetzer, M. W. 2010. “The Nuclear Envelope.” Cold Spring Harbor Perspectives in Biology 2, no. 3: a000539. https://doi.org/10.1101/cshperspect.a000539.
- Hoppe, G. J., J. C. Tanny, A. D. Rudner, et al. 2002. “Steps in Assembly of Silent Chromatin in Yeast: Sir3-Independent Binding of a Sir2/Sir4 Complex to Silencers and Role for Sir2-Dependent Deacetylation.” Molecular and Cellular Biology 22, no. 12: 4167–4180. https://doi.org/10.1128/MCB.22.12.4167-4180.2002.
- Horigome, C., T. Okada, K. Shimazu, S. M. Gasser, and K. Mizuta. 2011. “Ribosome Biogenesis Factors Bind a Nuclear Envelope SUN Domain Protein to Cluster Yeast Telomeres.” EMBO Journal 30, no. 18: 3799–3811. https://doi.org/10.1038/emboj.2011.267.
- Imai, S. I., C. M. Armstrong, M. Kaeberlein, and L. Guarente. 2000. “Transcriptional Silencing and Longevity Protein Sir2 Is an NAD-Dependent Histone Deacetylase.” Nature 403, no. 6771: 795–800. https://doi.org/10.1038/35001622.
- Infante, R. E., and A. Radhakrishnan. 2017. “Continuous Transport of a Small Fraction of Plasma Membrane Cholesterol to Endoplasmic Reticulum Regulates Total Cellular Cholesterol.” Elife 6: e25466. https://doi.org/10.7554/eLife.25466.
- Jaspersen, S. L., T. H. Giddings, and M. Winey. 2002. “Mps3p is a Novel Component of the Yeast Spindle Pole Body That Interacts With the Yeast Centrin Homologue Cdc31p.” Journal of Cell Biology 159, no. 6: 945–956. https://doi.org/10.1083/jcb.200208169.
- Kassambara, A. 2023. ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.6.0. https://cran.r-project.org/package=ggpubr.
- Kishimoto, T., T. Mioka, E. Itoh, D. E. Williams, R. J. Andersen, and K. Tanaka. 2021. “Phospholipid Flippases and Sfk1 Are Essential for the Retention of Ergosterol in the Plasma Membrane.” Molecular Biology of the Cell 32, no. 15: 1374–1392. https://doi.org/10.1091/mbc.E20-11-0699.
- Lapetina, D. L., C. Ptak, U. K. Roesner, and R. W. Wozniak. 2017. “Yeast Silencing Factor Sir4 and a Subset of Nucleoporins Form a Complex Distinct From Nuclear Pore Complexes.” Journal of Cell Biology 216, no. 10: 3145–3159.
- Laporte, D., F. Courtout, S. Tollis, and I. Sagot. 2016. “Quiescent Saccharomyces Cerevisiae Forms Telomere Hyperclusters at the Nuclear Membrane Vicinity Through a Multifaceted Mechanism Involving Esc1, the Sir Complex, and Chromatin Condensation.” Molecular Biology of the Cell 27, no. 12: 1875–1884.
- Livak, K. J., and T. D. Schmittgen. 2001. “Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method.” Methods (San Diego, Calif.) 25, no. 4: 402–408. https://doi.org/10.1006/METH.2001.1262.
- Luo, K., M. A. Vega-Palas, and M. Grunstein. 2002. “Rap1–Sir4 Binding Independent of Other Sir, yKu, or Histone Interactions Initiates the Assembly of Telomeric Heterochromatin in Yeast.” Genes & Development 16, no. 12: 1528. https://doi.org/10.1101/GAD.988802.
- MacDonald, C., J. A. Payne, M. Aboian, W. Smith, D. J. Katzmann, and R. C. Piper. 2015. “A Family of Tetraspans Organizes Cargo for Sorting Into Multivesicular Bodies.” Developmental Cell 33, no. 3: 328. https://doi.org/10.1016/J.DEVCEL.2015.03.007.
- Maekawa, M., and G. D. Fairn. 2015. “Complementary Probes Reveal That Phosphatidylserine Is Required for the Proper Transbilayer Distribution of Cholesterol.” Journal of Cell Science 128, no. 7: 1422–1433. https://doi.org/10.1242/jcs.164715.
- Manford, A. G., C. J. Stefan, H. L. Yuan, J. A. MacGurn, and S. D. Emr. 2012. “ER-to-Plasma Membrane Tethering Proteins Regulate Cell Signaling and ER Morphology.” Developmental Cell 23, no. 6: 1129–1140. https://doi.org/10.1016/j.devcel.2012.11.004.
- Marek, M., V. Vincenzetti, and S. G. Martin. 2020. “Sterol Biosensor Reveals LAM-Family Ltc1-Dependent Sterol Flow to Endosomes Upon Arp2/3 Inhibition.” Journal of Cell Biology 219, no. 6: e202001147. https://doi.org/10.1083/jcb.202001147.
- Mondoux, M. A., J. G. Scaife, and V. A. Zakian. 2007. “Differential Nuclear Localization Does Not Determine the Silencing Status of Saccharomyces cerevisiae Telomeres.” Genetics 177, no. 4: 2019–2029. https://doi.org/10.1534/genetics.107.079848.
- Moradi-Fard, S., J. Sarthi, M. Tittel-Elmer, M. Lalonde, E. Cusanelli, P. Chartrand, J. A. Cobb. 2016. “Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE.” PLoS Genet 12, no. 8: e1006268. https://doi.org/10.1371/journal.pgen.1006268
- Moretti, P., K. Freeman, L. Coodly, and D. Shore. 1994. “Evidence That a Complex of SIR Proteins Interacts With the Silencer and Telomere-Binding Protein RAP1.” Genes and Development 8, no. 19: 2257–2269. https://doi.org/10.1101/gad.8.19.2257.
- Moretti, P., and D. Shore. 2001. “Multiple Interactions in Sir Protein Recruitment by Rap1p at Silencers and Telomeres in Yeast.” Molecular and Cellular Biology 21, no. 23: 8082. https://doi.org/10.1128/MCB.21.23.8082-8094.2001.
- Morin, A., A. W. Moores, and M. Sacher. 2009. “Dissection of Saccharomyces cerevisiae Asci.” Journal of Visualized Experiments: JoVE 27: 1146. https://doi.org/10.3791/1146.
10.3791/1146 Google Scholar
- Nasmyth, K., and D. Shore. 1987. “ Transcriptional Regulation in the Yeast Life Cycle.” In Science, Vol. 237, 1162–1170. American Association for the Advancement of Science. https://doi.org/10.2307/1699512.
- Poon, B. P., and K. Mekhail. 2012. “Effects of Perinuclear Chromosome Tethers in the Telomeric URA3/5FOA System Reflect Changes to Gene Silencing and Not Nucleotide Metabolism.” Frontiers in Genetics 3: 144. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2012.00144.
- Rine, J., and I. Herskowitz. 1987. “Four Genes Responsible for a Position Effect on Expression From HML and HMR in Saccharomyces cerevisiae.” Genetics 116, no. 1: 9–22. http://www.ncbi.nlm.nih.gov/pubmed/3297920.
- Rusché, L. N., A. L. Kirchmaier, and J. Rine. 2002. “Ordered Nucleation and Spreading of Silenced Chromatin in Saccharomyces cerevisiae.” Molecular Biology of the Cell 13, no. 7: 2207–2222. https://doi.org/10.1091/MBC.E02-03-0175.
- Santos, A. X. S., and H. Riezman. 2012. “Yeast as a Model System for Studying Lipid Homeostasis and Function.” FEBS Letters 586, no. 18: 2858–2867. https://doi.org/10.1016/j.febslet.2012.07.033.
- Schindelin, J., I. Arganda-Carreras, E. Frise, et al. 2012. “Fiji: An Open-Source Platform for Biological-Image Analysis.” Nature Methods 9, no. 7: 676–682. https://doi.org/10.1038/nmeth.2019.
- Schober, H., H. Ferreira, V. Kalck, L. R. Gehlen, and S. M. Gasser. 2009. “Yeast Telomerase and the SUN Domain Protein Mps3 Anchor Telomeres and Repress Subtelomeric Recombination.” Genes & Development 23, no. 8: 928–938. https://doi.org/10.1101/gad.1787509.
- Smith, J. S., C. B. Brachmann, I. Celic, et al. 2000. “A Phylogenetically Conserved NAD+-Dependent Protein Deacetylase Activity in the Sir2 Protein Family.” Proceedings of the National Academy of Sciences of the United States of America 97, no. 12: 6658–6663. https://doi.org/10.1073/PNAS.97.12.6658.
- Sosa Ponce, M. L., J. A. Cobb, and V. Zaremberg. 2024. “Lipids and Chromatin: A Tale of Intriguing Connections Shaping Genomic Landscapes.” Trends in Cell Biology 35, no. 2: 141–152. https://doi.org/10.1016/j.tcb.2024.06.004.
- Sosa Ponce, M. L., M. Horta Remedios, S. Moradi-Fard, J. A. Cobb, and V. Zaremberg. 2023. “SIR Telomere Silencing Depends on Nuclear Envelope Lipids and Modulates Sensitivity to a Lysolipid.” Journal of Cell Biology 222, no. 7: e202206061. https://doi.org/10.1083/jcb.202206061.
- Spode, I., D. Maiwald, C. P. Hollenberg, and M. Suckow. 2002. “ATF/CREB Sites Present in Sub-Telomeric Regions of Saccharomyces cerevisiae Chromosomes Are Part of Promoters and Act as UAS/URS of Highly Conserved COS Genes.” Journal of Molecular Biology 319, no. 2: 407–420. https://doi.org/10.1016/S0022-2836(02)00322-4.
- Styles, E. B., K. J. Founk, L. A. Zamparo, et al. 2016. “Exploring Quantitative Yeast Phenomics With Single-Cell Analysis of DNA Damage Foci.” Cell Systems 3, no. 3: 264–277.e10. https://doi.org/10.1016/j.cels.2016.08.008.
- Taddei, A., and S. M. Gasser. 2012. “Structure and Function in the Budding Yeast Nucleus.” Genetics 192, no. 1: 107–129. https://doi.org/10.1534/GENETICS.112.140608.
- Taddei, A., F. Hediger, F. R. Neumann, C. Bauer, and S. M. Gasser. 2004. “Separation of Silencing From Perinuclear Anchoring Functions in Yeast Ku80, Sir4 and Esc1 Proteins.” EMBO Journal 23, no. 6: 1301–1312. https://doi.org/10.1038/sj.emboj.7600144.
- Taddei, A., G. Van Houwe, S. Nagai, I. Erb, E. van Nimwegen, and S. M. Gasser. 2009. “The Functional Importance of Telomere Clustering: Global Changes in Gene Expression Result From SIR Factor Dispersion.” Genome Research 19, no. 4: 611–625. https://doi.org/10.1101/gr.083881.108.
- Tanny, J. C., G. J. Dowd, J. Huang, H. Hilz, and D. Moazed. 1999. “An Enzymatic Activity in the Yeast Sir2 Protein That Is Essential for Gene Silencing.” Cell 99, no. 7: 735–745. https://doi.org/10.1016/S0092-8674(00)81671-2.
- Triolo, T., and R. Sternglanz. 1996. “Role of Interactions Between the Origin Recognition Complex and SIR1 in Transcriptional Silencing.” Nature 381, no. 6579: 251–253. https://doi.org/10.1038/381251A0.
- Vanni, S., H. Hirose, H. Barelli, B. Antonny, and R. Gautier. 2014. “A Sub-Nanometre View of How Membrane Curvature and Composition Modulate Lipid Packing and Protein Recruitment.” Nature Communications 5: 4916. https://doi.org/10.1038/ncomms5916.
- Vida, T. A., and S. D. Emr. 1995. “A New Vital Stain for Visualizing Vacuolar Membrane Dynamics and Endocytosis in Yeast.” Journal of Cell Biology 128, no. 5: 779–792. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2120394&tool=pmcentrez&rendertype=abstract.
- Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. https://ggplot2.tidyverse.org.
10.1007/978-3-319-24277-4 Google Scholar
- Wong, L. H., A. T. Gatta, and T. P. Levine. 2019. “Lipid Transfer Proteins: The Lipid Commute via Shuttles, Bridges and Tubes.” Nature Reviews Molecular Cell Biology 20, no. 2: 85–101. https://doi.org/10.1038/s41580-018-0071-5.
- Wright, J. H., and V. A. Zakian. 1995. “Protein-DNA Interactions in Soluble Telosomes From Saccharomyces cerevisiae.” Nucleic Acids Research 23, no. 9: 1454–1460. http://www.ncbi.nlm.nih.gov/pubmed/7784196.
- Yang, B., J. Britton, and A. L. Kirchmaier. 2008. “Insights Into the Impact of Histone Acetylation and Methylation on Sir Protein Recruitment, Spreading, and Silencing in Saccharomyces cerevisiae.” Journal of Molecular Biology 381, no. 4: 826–844. https://doi.org/10.1016/J.JMB.2008.06.059.
- Zaremberg, V., C. Gajate, L. M. Cacharro, F. Mollinedo, and C. R. McMaster. 2005. “Cytotoxicity of an Anti-Cancer Lysophospholipid Through Selective Modification of Lipid Raft Composition.” Journal of Biological Chemistry 280, no. 45: 38047–38058. https://doi.org/10.1074/jbc.M502849200.
- Zaremberg, V., and C. R. McMaster. 2002. “Differential Partitioning of Lipids Metabolized by Separate Yeast Glycerol-3-Phosphate Acyltransferases Reveals That Phospholipase D Generation of Phosphatidic Acid Mediates Sensitivity to Choline-Containing Lysolipids and Drugs.” Journal of Biological Chemistry 277, no. 41: 39035–39044. https://doi.org/10.1074/JBC.M207753200.
- Zheng Koh, D. H., and Y. Saheki. 2021. “Regulation of Plasma Membrane Sterol Homeostasis by Nonvesicular Lipid Transport.” Contact 4: 25152564211042452. https://doi.org/10.1177/25152564211042451.
10.1177/25152564211042451 Google Scholar