Association of gene mutations with time-to-first treatment in 384 treatment-naive chronic lymphocytic leukaemia patients
Boyu Hu
Division of Hematology/Hematologic Malignancies, Huntsman Cancer Institute, Salt Lake City, UT, USA
Search for more papers by this authorKeyur P. Patel
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorHsiang-Chun Chen
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorXuemei Wang
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorRajyalakshmi Luthra
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorMark J. Routbort
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorRashmi Kanagal-Shamanna
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorL. Jeffrey Medeiros
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorC. Cameron Yin
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorZhuang Zuo
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorChi Y. Ok
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorSanam Loghavi
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorGuilin Tang
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorFrancesco P. Tambaro
S.S.D. TMO - AORN Santobono-Pausilipon, Napoli, Italy
Search for more papers by this authorPhilip Thompson
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorJan Burger
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorNitin Jain
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorAlessandra Ferrajoli
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorPrithviraj Bose
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorZeev Estrov
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorMichael Keating
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorCorresponding Author
William G. Wierda
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Correspondence: William G. Wierda, Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit #428, Houston, TX 77030, USA.
E-mail: [email protected]
Search for more papers by this authorBoyu Hu
Division of Hematology/Hematologic Malignancies, Huntsman Cancer Institute, Salt Lake City, UT, USA
Search for more papers by this authorKeyur P. Patel
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorHsiang-Chun Chen
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorXuemei Wang
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorRajyalakshmi Luthra
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorMark J. Routbort
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorRashmi Kanagal-Shamanna
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorL. Jeffrey Medeiros
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorC. Cameron Yin
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorZhuang Zuo
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorChi Y. Ok
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorSanam Loghavi
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorGuilin Tang
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorFrancesco P. Tambaro
S.S.D. TMO - AORN Santobono-Pausilipon, Napoli, Italy
Search for more papers by this authorPhilip Thompson
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorJan Burger
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorNitin Jain
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorAlessandra Ferrajoli
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorPrithviraj Bose
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorZeev Estrov
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorMichael Keating
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Search for more papers by this authorCorresponding Author
William G. Wierda
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Correspondence: William G. Wierda, Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit #428, Houston, TX 77030, USA.
E-mail: [email protected]
Search for more papers by this authorSummary
This study correlated somatic mutation results and known prognostic factors with time-to-first treatment (TTFT) in 384 treatment-naïve (TN) chronic lymphocytic leukaemia (CLL) patients to help determine disease-specific drivers of early untreated CLL. CLL DNA from either peripheral blood or bone marrow underwent next generation targeted sequencing with a 29-gene panel. Gene mutation data and concurrent clinical characteristics, such as Rai/Binet stage, fluorescence in situ hybridisation (FISH), ZAP70/CD38, karyotype and IGHV mutation, status were analysed in univariable and multivariable analyses to identify associations with TTFT. TTFT was defined as time from diagnosis to initial treatment. In univariable analyses, mutated ATM (P < 0·001), NOTCH1 (P < 0·001) and SF3B1 (P = 0·002) as well as unmutated IGHV (P < 0·001), del(11q) (P < 0·001) and trisomy 12 (P < 0·001) by hierarchal FISH and advanced Rai (P = 0·05) and Binet (P < 0·001) stages were associated with shorter TTFT. Importantly, del(17p), mutated TP53 and complex karyotype were not associated with shorter TTFT. In a reduced multivariable analysis, mutated ATM (P < 0·001) and unmutated IGHV status (P < 0·001) remained significant, showing their importance in early leukaemogenesis. High-risk prognostic markers such as del(17p), mutated TP53 and complex karyotype, were not correlated with TTFT, suggesting that these abnormalities have limited roles in early disease progression but are more important in relapsed CLL.
Conflicts of Interest
All authors have no conflicts to disclose.
Supporting Information
Filename | Description |
---|---|
bjh16042-sup-0001-Supinfo.docxapplication/docx, 56.9 KB |
Table S1. Exons sequenced of the 29 genes within the END CLL Assay V1 panel. Table S2. Median time to first treatment of selected mutations that were not statistically significant in a univariate analysis. Table S3. Modified reduced model of the multivariate analysis with addition of the del(11q)/ATM mutation co-occurrence, which included 234 patients. Table S4. Modified reduced model of the multivariate analysis with addition of the del(11q)/SF3B1 mutation co-occurrence, which included 234 patients. Table S5. Modified reduced model of the multivariate analysis with addition of the trisomy 12/NOTCH1 mutation co-occurrence, which included 198 patients. Table S6. Comparison of the location of mutations in certain genes and its effects on median time to first treatment. Fig S1. Scatter plot of tumor purity graphed against the variant allele frequency (VAF) detected in each sample according to mutation. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Admirand, J.H., Rassidakis, G.Z., Abruzzo, L.V., Valbuena, J.R., Jones, D. & Medeiros, L.J. (2004) Immunohistochemical detection of ZAP-70 in 341 cases of non-Hodgkin and Hodgkin lymphoma. Modern Pathology, 17, 954–961.
- Ammann, E.M., Shanafelt, T.D., Wright, K.B., McDowell, B.D., Link, B.K. & Chrischilles, E.A. (2018) Updating survival estimates in patients with chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) based on treatment-free interval length. Leukaemia & Lymphoma, 59, 643–649.
- Baliakas, P., Jeromin, S., Iskas, M., Puiggros, A., Plevova, K., Nguyen-Khac, F., Davis, Z., Rigolin, G.M., Visentin, A., Xochelli, A., Delgado, J., Baran-Marszak, F., Stalika, E., Abrisqueta, P., Durechova, K., Papaioannou, G., Eclache, V., Dimou, M., Iliakis, T., Collado, R., Doubek, M., Calasanz, M.J., Ruiz-Xiville, N., Moreno, C., Jarosova, M., Leeksma, A.C., Panayiotidis, P., Podgornik, H., Cymbalista, F., Anagnostopoulos, A., Trentin, L., Stavroyianni, N., Davi, F., Ghia, P., Kater, A.P., Cuneo, A., Pospisilova, S., Espinet, B., Athanasiadou, A., Oscier, D., Haferlach, C. & Stamatopoulos, K. (2019) Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood, 133, 1205–1216.
- Bertocci, B., Lecoeuche, D., Sterlin, D., Kuhn, J., Gaillard, B., De Smet, A., Lembo, F., Bole-Feysot, C., Cagnard, N., Fadeev, T., Dahan, A., Weill, J.C. & Reynaud, C.A. (2017) Klhl6 deficiency impairs transitional B cell survival and differentiation. The Journal of Immunology, 199, 2408–2420.
- Brieghel, C., Kinalis, S., Yde, C.W., Schmidt, A.Y., Jonson, L., Andersen, M.A., da Cunha-Bang, C., Pedersen, L.B., Geisler, C.H., Nielsen, F.C. & Niemann, C.U. (2019) Deep targeted sequencing of TP53 in chronic lymphocytic leukemia: clinical impact at diagnosis and at time of treatment. Haematologica, 104, 789–796.
- Cortese, D., Sutton, L.A., Cahill, N., Smedby, K.E., Geisler, C., Gunnarsson, R., Juliusson, G., Mansouri, L. & Rosenquist, R. (2014) On the way towards a 'CLL prognostic index': focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia, 28, 710–713.
- Cox, D.R. (1992) Regression models and life-tables. In: Breakthroughs in Statistics: Methodology and Distribution (eds. by S. Kotz & N.L. Johnson), pp. 527–541. Springer, New York, New York, NY.
10.1007/978-1-4612-4380-9_37 Google Scholar
- Crespo, M., Bosch, F., Villamor, N., Bellosillo, B., Colomer, D., Rozman, M., Marce, S., Lopez-Guillermo, A., Campo, E. & Montserrat, E. (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. New England Journal of Medicine, 348, 1764–1775.
- Deaglio, S., Capobianco, A., Bergui, L., Durig, J., Morabito, F., Duhrsen, U. & Malavasi, F. (2003) CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood, 102, 2146–2155.
- Dicker, F., Schnittger, S., Haferlach, T., Kern, W. & Schoch, C. (2006) Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood, 108, 3152–3160.
- DiNardo, C.D., Routbort, M.J., Bannon, S.A., Benton, C.B., Takahashi, K., Kornblau, S.M., Luthra, R., Kanagal-Shamanna, R., Medeiros, L.J., Garcia-Manero, G., M Kantarjian, H., Futreal, P.A., Meric-Bernstam, F. & Patel, K.P.(2018) Improving the detection of patients with inherited predispositions to hematologic malignancies using next-generation sequencing-based leukemia prognostication panels. Cancer, 124, 2704–2713.
- Dohner, H., Stilgenbauer, S., Benner, A., Leupolt, E., Krober, A., Bullinger, L., Dohner, K., Bentz, M. & Lichter, P. (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. New England Journal of Medicine, 343, 1910–1916.
- Duzkale, H., Schweighofer, C.D., Coombes, K.R., Barron, L.L., Ferrajoli, A., O'Brien, S., Wierda, W.G., Pfeifer, J., Majewski, T., Czerniak, B.A., Jorgensen, J.L., Medeiros, L.J., Freireich, E.J., Keating, M.J. & Abruzzo, L.V. (2011) LDOC1 mRNA is differentially expressed in chronic lymphocytic leukemia and predicts overall survival in untreated patients. Blood, 117, 4076–4084.
- Gentile, M., Shanafelt, T.D., Cutrona, G., Molica, S., Tripepi, G., Alvarez, I., Mauro, F.R., Di Renzo, N., Di Raimondo, F., Vincelli, I., Todoerti, K., Matis, S., Musolino, C., Fabris, S., Vigna, E., Levato, L., Zupo, S., Angrilli, F., Consoli, U., Festini, G., Longo, G., Cortelezzi, A., Arcari, A., Federico, M., Mannina, D., Recchia, A.G., Neri, A., Kay, N.E., Ferrarini, M. & Morabito, F. (2016) A progression-risk score to predict treatment-free survival for early stage chronic lymphocytic leukemia patients. Leukemia, 30, 1440–1443.
- Del Giudice, I., Morilla, A., Osuji, N., Matutes, E., Morilla, R., Burford, A., Maravelaki, S., Owusu-Ankomah, K., Swansbury, J., A'Hern, R., Brito-Babapulle, V. & Catovsky, D. (2005) Zeta-chain associated protein 70 and CD38 combined predict the time to first treatment in patients with chronic lymphocytic leukemia. Cancer, 104, 2124–2132.
- Del Giudice, I., Rossi, D., Chiaretti, S., Marinelli, M., Tavolaro, S., Gabrielli, S., Laurenti, L., Marasca, R., Rasi, S., Fangazio, M., Guarini, A., Gaidano, G. & Foa, R. (2012) NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica, 97, 437–441.
- Giudicelli, V. & Lefranc, M.P. (2011) IMGT/junctionanalysis: IMGT standardized analysis of the V-J and V-D-J junctions of the rearranged immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harbor Protocols, 2011, 716–725.
- Haferlach, C., Dicker, F., Schnittger, S., Kern, W. & Haferlach, T. (2007) Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia, 21, 2442–2451.
- Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. & Stevenson, F.K. (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood, 94, 1848–1854.
- Hamblin, T.J., Orchard, J.A., Ibbotson, R.E., Davis, Z., Thomas, P.W., Stevenson, F.K. & Oscier, D.G. (2002) CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood, 99, 1023–1029.
- Herling, C.D., Klaumunzer, M., Rocha, C.K., Altmuller, J., Thiele, H., Bahlo, J., Kluth, S., Crispatzu, G., Herling, M., Schiller, J., Engelke, A., Tausch, E., Dohner, H., Fischer, K., Goede, V., Nurnberg, P., Reinhardt, H.C., Stilgenbauer, S., Hallek, M. & Kreuzer, K.A. (2016) Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood, 128, 395–404.
- Herve, M., Xu, K., Ng, Y.S., Wardemann, H., Albesiano, E., Messmer, B.T., Chiorazzi, N. & Meffre, E. (2005) Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. The Journal of Clinical Investigation, 115, 1636–1643.
- Hu, B., Patel, K.P., Chen, H.C., Wang, X., Wang, F., Luthra, R., Routbort, M.J., Kanagal-Shamanna, R., Medeiros, L.J., Yin, C.C., Zuo, Z., Ok, C.Y., Loghavi, S., Tang, G., Tambaro, F.P., Thompson, P., Burger, J., Jain, N., Ferrajoli, A., Bose, P., Estrov, Z., Keating, M.J. & Wierda, W.G. (2019) Routine sequencing in CLL has prognostic implications and provides new insight into pathogenesis and targeted treatments. British Journal of Haematology, 185, 852–864.
- Hunter, Z.R., Xu, L., Yang, G., Zhou, Y., Liu, X., Cao, Y., Manning, R.J., Tripsas, C., Patterson, C.J., Sheehy, P. & Treon, S.P. (2014) The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR24 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood, 123, 1637–1646.
- Jeromin, S., Weissmann, S., Haferlach, C., Dicker, F., Bayer, K., Grossmann, V., Alpermann, T., Roller, A., Kohlmann, A., Haferlach, T., Kern, W. & Schnittger, S. (2014) SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia, 28, 108–117.
- Kaplan, E.L. & Meier, P. (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.
- Landau, D.A., Tausch, E., Taylor-Weiner, A.N., Stewart, C., Reiter, J.G., Bahlo, J., Kluth, S., Bozic, I., Lawrence, M., Bottcher, S., Carter, S.L., Cibulskis, K., Mertens, D., Sougnez, C.L., Rosenberg, M., Hess, J.M., Edelmann, J., Kless, S., Kneba, M., Ritgen, M., Fink, A., Fischer, K., Gabriel, S., Lander, E.S., Nowak, M.A., Dohner, H., Hallek, M., Neuberg, D., Getz, G., Stilgenbauer, S. & Wu, C.J. (2015) Mutations driving CLL and their evolution in progression and relapse. Nature, 526, 525–530.
- Mantel, N. (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports, 50, 163–170.
- Molica, S., Mauro, F.R., Callea, V., Giannarelli, D., Lauria, F., Rotoli, B., Cortelezzi, A., Liso, V. & Foa, R. (2010) The utility of a prognostic index for predicting time to first treatment in early chronic lymphocytic leukemia: the GIMEMA experience. Haematologica, 95, 464–469.
- Nadeu, F., Delgado, J., Royo, C., Baumann, T., Stankovic, T., Pinyol, M., Jares, P., Navarro, A., Martin-Garcia, D., Bea, S., Salaverria, I., Oldreive, C., Aymerich, M., Suarez-Cisneros, H., Rozman, M., Villamor, N., Colomer, D., Lopez-Guillermo, A., Gonzalez, M., Alcoceba, M., Terol, M.J., Colado, E., Puente, X.S., Lopez-Otin, C., Enjuanes, A. & Campo, E. (2016) Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood, 127, 2122–2130.
- Ngo, V.N., Young, R.M., Schmitz, R., Jhavar, S., Xiao, W., Lim, K.H., Kohlhammer, H., Xu, W., Yang, Y., Zhao, H., Shaffer, A.L., Romesser, P., Wright, G., Powell, J., Rosenwald, A., Muller-Hermelink, H.K., Ott, G., Gascoyne, R.D., Connors, J.M., Rimsza, L.M., Campo, E., Jaffe, E.S., Delabie, J., Smeland, E.B., Fisher, R.I., Braziel, R.M., Tubbs, R.R., Cook, J.R., Weisenburger, D.D., Chan, W.C. & Staudt, L.M. (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature, 470, 115–119.
- Piasecka, A., Brzuzan, P., Wozny, M., Ciesielski, S. & Kaczmarczyk, D. (2015) Splice-acceptor site mutation in p53 gene of hu888 zebrafish line. Journal of Applied Genetics, 56, 115–121.
- Poncet, D., Belleville, A., t'kint de Roodenbeke, C., Roborel de Climens, A., Ben Simon, E., Merle-Beral, H., Callet-Bauchu, E., Salles, G., Sabatier, L., Delic, J. & Gilson, E. (2008) Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood, 111, 2388–2391.
- Puente, X.S., Pinyol, M., Quesada, V., Conde, L., Ordonez, G.R., Villamor, N., Escaramis, G., Jares, P., Bea, S., Gonzalez-Diaz, M., Bassaganyas, L., Baumann, T., Juan, M., Lopez-Guerra, M., Colomer, D., Tubio, J.M., Lopez, C., Navarro, A., Tornador, C., Aymerich, M., Rozman, M., Hernandez, J.M., Puente, D.A., Freije, J.M., Velasco, G., Gutierrez-Fernandez, A., Costa, D., Carrio, A., Guijarro, S., Enjuanes, A., Hernandez, L., Yague, J., Nicolas, P., Romeo-Casabona, C.M., Himmelbauer, H., Castillo, E., Dohm, J.C., de Sanjose, S., Piris, M.A., de Alava, E., San Miguel, J., Royo, R., Gelpi, J.L., Torrents, D., Orozco, M., Pisano, D.G., Valencia, A., Guigo, R., Bayes, M., Heath, S., Gut, M., Klatt, P., Marshall, J., Raine, K., Stebbings, L.A., Futreal, P.A., Stratton, M.R., Campbell, P.J., Gut, I., Lopez-Guillermo, A., Estivill, X., Montserrat, E., Lopez-Otin, C. & Campo, E. (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 475, 101–105.
- Ramsay, A.J., Quesada, V., Foronda, M., Conde, L., Martinez-Trillos, A., Villamor, N., Rodriguez, D., Kwarciak, A., Garabaya, C., Gallardo, M., Lopez-Guerra, M., Lopez-Guillermo, A., Puente, X.S., Blasco, M.A., Campo, E. & Lopez-Otin, C. (2013) POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nature Genetics, 45, 526–530.
- Rassenti, L.Z., Huynh, L., Toy, T.L., Chen, L., Keating, M.J., Gribben, J.G., Neuberg, D.S., Flinn, I.W., Rai, K.R., Byrd, J.C., Kay, N.E., Greaves, A., Weiss, A. & Kipps, T.J. (2004) ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. New England Journal of Medicine, 351, 893–901.
- Shiloh, Y. & Ziv, Y. (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology, 14, 197–210.
- Skowronska, A., Parker, A., Ahmed, G., Oldreive, C., Davis, Z., Richards, S., Dyer, M., Matutes, E., Gonzalez, D., Taylor, A.M., Moss, P., Thomas, P., Oscier, D. & Stankovic, T. (2012) Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. Journal of Clinical Oncology, 30, 4524–4532.
- Stankovic, T. & Skowronska, A. (2014) The role of ATM mutations and 11q deletions in disease progression in chronic lymphocytic leukemia. Leukaemia & Lymphoma, 55, 1227–1239.
- Takahashi, K., Hu, B., Wang, F., Yan, Y., Kim, E., Vitale, C., Patel, K.P., Strati, P., Gumbs, C., Little, L., Tippen, S., Song, X., Zhang, J., Jain, N., Thompson, P., Garcia-Manero, G., Kantarjian, H., Estrov, Z., Do, K.A., Keating, M., Burger, J.A., Wierda, W.G., Futreal, P.A. & Ferrajoli, A. (2018) Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide. Blood, 131, 1820–1832.
- Turner, J.G., Dawson, J. & Sullivan, D.M. (2012) Nuclear export of proteins and drug resistance in cancer. Biochemical Pharmacology, 83, 1021–1032.
- Wang, L., Lawrence, M.S., Wan, Y., Stojanov, P., Sougnez, C., Stevenson, K., Werner, L., Sivachenko, A., DeLuca, D.S., Zhang, L., Zhang, W., Vartanov, A.R., Fernandes, S.M., Goldstein, N.R., Folco, E.G., Cibulskis, K., Tesar, B., Sievers, Q.L., Shefler, E., Gabriel, S., Hacohen, N., Reed, R., Meyerson, M., Golub, T.R., Lander, E.S., Neuberg, D., Brown, J.R., Getz, G. & Wu, C.J. (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. New England Journal of Medicine, 365, 2497–2506.
- Wang, X., Liu, Y., Shao, D., Qian, Z., Dong, Z., Sun, Y., Xing, X., Cheng, X., Du, H., Hu, Y., Li, Y., Li, L., Dong, B., Li, Z., Wu, A., Wu, X., Bu, Z., Zong, X., Zhu, G., Ji, Q., Wen, X.Z., Zhang, L.H. & Ji, J.F. (2016) Recurrent amplification of MYC and TNFRSF11B in 8q24 is associated with poor survival in patients with gastric cancer. Gastric Cancer, 19, 116–127.
- Wierda, W.G., O'Brien, S., Wang, X., Faderl, S., Ferrajoli, A., Do, K.A., Cortes, J., Thomas, D., Garcia-Manero, G., Koller, C., Beran, M., Giles, F., Ravandi, F., Lerner, S., Kantarjian, H. & Keating, M. (2007) Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood, 109, 4679–4685.
- Wierda, W.G., O'Brien, S., Wang, X., Faderl, S., Ferrajoli, A., Do, K.A., Garcia-Manero, G., Cortes, J., Thomas, D., Koller, C.A., Burger, J.A., Lerner, S., Schlette, E., Abruzzo, L., Kantarjian, H.M. & Keating, M.J. (2011) Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. Journal of Clinical Oncology, 29, 4088–4095.
- Zenz, T., Mertens, D., Kuppers, R., Dohner, H. & Stilgenbauer, S. (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nature Reviews Cancer, 10, 37–50.