CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia
Bas Kersten
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Search for more papers by this authorMatthijs Valkering
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Search for more papers by this authorRolf Wouters
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorRosa van Amerongen
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorDiana Hanekamp
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorZinia Kwidama
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorPeter Valk
Department of Haematology, Erasmus Medical Centre, Rotterdam, the Netherlands
Search for more papers by this authorGert Ossenkoppele
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorWendelien Zeijlemaker
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorGertjan Kaspers
Department of Paediatric Oncology/Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorJacqueline Cloos
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Department of Paediatric Oncology/Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Search for more papers by this authorCorresponding Author
Gerrit J. Schuurhuis
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Correspondence: Dr Gerrit J. Schuurhuis, Department of Haematology, VU University Medical Centre, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
E-mail: [email protected]
Search for more papers by this authorBas Kersten
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Search for more papers by this authorMatthijs Valkering
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Search for more papers by this authorRolf Wouters
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorRosa van Amerongen
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorDiana Hanekamp
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorZinia Kwidama
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorPeter Valk
Department of Haematology, Erasmus Medical Centre, Rotterdam, the Netherlands
Search for more papers by this authorGert Ossenkoppele
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorWendelien Zeijlemaker
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorGertjan Kaspers
Department of Paediatric Oncology/Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Search for more papers by this authorJacqueline Cloos
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Department of Paediatric Oncology/Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Search for more papers by this authorCorresponding Author
Gerrit J. Schuurhuis
Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
Both authors contributed equally.Correspondence: Dr Gerrit J. Schuurhuis, Department of Haematology, VU University Medical Centre, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
E-mail: [email protected]
Search for more papers by this authorAbstract
Chemotherapy resistant leukaemic stem cells (LSC) are thought to be responsible for relapses after therapy in acute myeloid leukaemia (AML). Flow cytometry can discriminate CD34+CD38− LSC and normal haematopoietic stem cells (HSC) by using aberrant expression of markers and scatter properties. However, not all LSC can be identified using currently available markers, so new markers are needed. CD45RA is expressed on leukaemic cells in the majority of AML patients. We investigated the potency of CD45RA to specifically identify LSC and HSC and improve LSC quantification. Compared to our best other markers (CLL-1, also termed CLEC12A, CD33 and CD123), CD45RA was the most reliable marker. Patients with high percentages (>90%) of CD45RA on CD34+CD38− LSC have 1·69-fold higher scatter values compared to HSC (P < 0·001), indicating a more mature CD34+CD38− phenotype. Patients with low (<10%) or intermediate (10–90%) CD45RA expression on LSC showed no significant differences to HSC (1·12- and 1·15-fold higher, P = 0·31 and P = 0·44, respectively). CD45RA-positive LSC tended to represent more favourable cytogenetic/molecular markers. In conclusion, CD45RA contributes to more accurate LSC detection and is recommended for inclusion in stem cell tracking panels. CD45RA may contribute to define new LSC-specific therapies and to monitor effects of anti-LSC treatment.
Supporting Information
Filename | Description |
---|---|
bjh13941-sup-0001-SupInfo.docxWord document, 592.4 KB | Table SIA. FSC and SSC and FSC*SSC values for LSC and HSC/MPP in the CD45RAhigh group. Table SIB. FSC and SSC and FSC*SSC values for LSC and HSC/MPP in the CD45RAlow group. Table SIC. FSC and SSC and FSC*SSC values for LSC and HSC/MPP in the CD45RAint group. Table SII. Molecular make up of CD45RA defined sub-groups. Figure S1. CD45RA in NBM, three additional cases. Figure S2. Distribution of the scores per marker over the four performance groups. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Bachas, C., Schuurhuis, G.J., Assaraf, Y.G., Kwidama, Z.J., Kelder, A., Wouters, F., Snel, A.N., Kaspers, G.J.L. & Cloos, J. (2012) The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia, 26, 1313–1320.
- Becker, M.W. & Jordan, C.T. (2011) Leukemia stem cells in 2010: current understanding and future directions. Blood Reviews, 25, 75–81.
- Bonnet, D. & Dick, J.E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.
- Corces-Zimmerman, M.R. & Majeti, R. (2014) Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia, 12, 2276–2282.
- Cornelissen, J.J., van Putten, W.L.J., Verdonck, L.F., Theobald, M., Jacky, E., Daenen, S.M.G., van Marwijk Kooy, M., Wijermans, P., Schouten, H., Huijgens, P.C., van der Lelie, H., Fey, M., Ferrant, A., Maertens, J., Gratwohl, A. & Lowenberg, B. (2007) Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood, 109, 3658–3666.
- Costello, R.T., Mallet, F., Gaugler, B., Sainty, D., Arnoulet, C., Gastaut, J.A. & Olive, D. (2000) Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Research, 60, 4403–4411.
- Dick, J.E. (2008) ASH 50th anniversary review Stem cell concepts renew cancer research. Blood, 112, 4793–4807.
- Estey, E.H. (2013) Acute myeloid leukemia: 2013 update on risk-stratification and management. American Journal of Hematology, 88, 318–327.
- Feller, N., van der Pol, M.A., van Stijn, A., Weijers, G.W.D., Westra, A.H., Evertse, B.W., Ossenkoppele, G.J. & Schuurhuis, G.J. (2004) MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia, 18, 1380–1390.
- Fialkow, P.J., Singer, J.W. & Reskind, W.H. (1987) Clonal development, stem-cell differentiation, and clinical remission in acute nonlymphocytic leukemia. The New England Journal of Medicine, 317, 468–473.
- Freeman, S.D., Virgo, P., Couzens, S., Grimwade, D., Russell, N., Hills, R.K. & Burnett, A.K. (2013) Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 4123–4131.
- Gerber, J.M., Smith, B.D., Ngwang, B., Zhang, H., Vala, M.S., Morsberger, L., Galkin, S., Collector, M.I., Perkins, B., Levis, M.J., Griffin, C.A., Sharkis, S.J., Borowitz, M.J., Karp, J.E. & Jones, R.J. (2012) A clinically relevant population of leukemic CD34(+)CD38(−) cells in acute myeloid leukemia. Blood, 119, 3571–3577.
- Goardon, N., Marchi, E., Atzberger, A., Quek, L., Schuh, A., Soneji, S., Woll, P., Mead, A., Alford, K.A., Rout, R., Chaudhury, S., Gilkes, A., Knapper, S., Beldjord, K., Begum, S., Rose, S., Geddes, N., Griffiths, M., Standen, G., Sternberg, A., Cavenagh, J., Hunter, H., Bowen, D., Killick, S., Robinson, L., Price, A., Macintyre, E., Virgo, P., Burnett, A., Craddock, C., Enver, T., Jacobsen, S.E., Porcher, C. & Vyas, P. (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell., 19, 138–152.
- Hoffmann, P., Eder, R., Boeld, T.J., Doser, K., Piseshka, B., Andreesen, R. & Edinger, M. (2006) Only the CD45RA+ subpopulation of CD4 + CD25 high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood, 108, 4260–4267.
- Ishikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., Nakamura, R., Tanaka, T., Tomiyama, H., Saito, N., Fukata, M., Miyamoto, T., Lyons, B., Ohshima, K., Uchida, N., Taniguchi, S., Ohara, O., Akashi, K., Harada, M. & Shultz, L.D. (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnology, 25, 1315–1321.
- Jan, M., Snyder, M.T., Corces-Zimmerman, M.R., Vyas, P., Weissman, I.L., Quake, R.S. & Majeti, R. (2012) Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia. Science Translational Medicine, 4, 149ra118. doi: 10.1126/scitranslmed.3004315
- Kern, W., Voskova, D., Schoch, C., Hiddemann, W., Schnittger, S. & Haferlach, T. (2004) Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood, 104, 3078–3085.
- Majeti, R., Park, C. & Weissman, I.L. (2008) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell, 1, 635–645.
- Passegué, E., Jamieson, C.H.M., Ailles, L.E. & Weissman, I.L. (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proceedings of the National Academy of Sciences of the United States of America, 100, 11842–11849.
- Ran, D., Schubert, M., Taubert, I., Eckstein, V., Bellos, F., Jauch, A., Chen, H., Bruckner, T., Saffrich, R., Wuchter, P. & Ho, A.D. (2012) Heterogeneity of leukemia stem cell candidates at diagnosis of acute myeloid leukemia and their clinical significance. Experimental Hematology, 40, e1.
- van Rhenen, A., Feller, N., Kelder, A., Westra, A.H., Rombouts, E., Zweegman, S., van der Pol, M.A., Waisfisz, Q., Ossenkoppele, G.J. & Schuurhuis, G.J. (2005) High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 11, 6520–6527.
- van Rhenen, A., Moshaver, B., Kelder, A., Feller, N., Nieuwint, A.W.M., Zweegman, S., Ossenkoppele, G.J. & Schuurhuis, G.J. (2007) Aberrant marker expression patterns on the CD34+CD38− stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia, 21, 1700–1707.
- Rockova, V., Abbas, S., Wouters, B.J., Erpelinck, C.A.J., Beverloo, H.B., Putten, W.L.J., van Löwenberg, B., Valk, P.J.M., Delwel, R. & Lo, B. (2011) Integrative analysis of a multitude of gene mutation and gene expression markers Risk stratification of intermediate-risk acute myeloid leukemia : integrative analysis of a multitude of gene mutation and gene expression markers. Blood, 118, 1069–1076.
- San Miguel, J.F., Vidriales, M.B., López-Berges, C., Díaz-Mediavilla, J., Gutiérrez, N., Cañizo, C., Ramos, F., Calmuntia, M.J., Pérez, J.J., González, M. & Orfao, A. (2001) Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood, 98, 1746–1751. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11535507.
- Schuurhuis, G.J., Meel, M.H., Wouters, F., Min, L.A., Terwijn, M., de Jonge, N.A., Kelder, A., Snel, A.N., Zweegman, S., Ossenkoppele, G.J. & Smit, L. (2013) Normal hematopoietic stem cells within the AML bone marrow have a distinct and higher ALDH activity level than co-existing leukemic stem cells. PLoS ONE, 8, e78897. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3823975&tool=pmcentrez&rendertype=abstract [Accessed April 28, 2014].
- Shlush, L.I., Zandi, S., Mitchell, A., Chen, W.C., Brandwein, J.M., Gupta, V., Kennedy, J.A., Schimmer, A.D., Schuh, A.C., Yee, K.W., McLeod, J.L., Doedens, M., Medeiros, J.J.F., Marke, R., Kim, H.J., Lee, K., McPherson, J.D., Hudson, T.J., Brown, A.M.K., Yousif, F., Trinh, Q.M., Stein, L.D., Minden, M.D., Wang, J.C. & Dick, J.E. (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature, 506, 328–333. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24522528 [Accessed July 18, 2014].
- Terwijn, M., van Putten, W.L.J., Kelder, A., van der Velden, V.H.J., Brooimans, R.A., Pabst, T., Maertens, J., Boeckx, N., de Greef, G.E., Valk, P.J.M., Preijers, F.W.M.B., Huijgens, P.C., Dräger, A.M., Schanz, U., Jongen-Lavrecic, M., Biemond, B.J., Passweg, J.R., van Gelder, M., Wijermans, P., Graux, C., Bargetzi, M., Legdeur, M.C., de Kuball, J., Weerdt, O., Chalandon, Y., Hess, U., Verdonck, L.F., Gratama, J.W., Oussoren, Y.J., Scholten, W.J., Slomp, J., Snel, A.N., Vekemans, M.C., Löwenberg, B., Ossenkoppele, G.J. & Schuurhuis, G.J. (2013) High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 3889–3897. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24062400 [Accessed May 2, 2014].
- Terwijn, M., Rutten, A.P., Snel, A.N., Zeijlemaker, W., Zweegman, S., Scholten, W.J., Pabst, T., Verhoef, G., Lo, B., Ossenkoppele, G.J. & Schuurhuis, G.J. (2014) Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS ONE, 9, 7–9.
- Van der Pol, M.A., Feller, N., Roseboom, M., Moshaver, B., Westra, G., Broxterman, H.J., Ossenkoppele, G.J. & Schuurhuis, G.J. (2003) Assessment of the normal or leukemic nature of CD34+ cells in acute myeloid leukemia with low percentages of CD34 cells. Haematologica, 88, 983–993.
- Vardiman, J.W., Thiele, J., Arber, D.A., Brunning, R.D., Borowitz, M.J., Porwit, A., Harris, N.L., Le Beau, M.M., Hellström-Lindberg, E., Tefferi, A. & Bloomfield, C.D. (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood, 114, 937–951.
- Venditti, A., Buccisano, F., Del Poeta, G., Maurillo, L., Tamburini, A., Cox, C., Battaglia, A., Catalano, G., Del Moro, B., Cudillo, L., Postorino, M., Masi, M. & Amadori, S. (2000) Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood, 96, 3948–3952.
- Vidriales, M.B., Orfao, A., López-Berges, M.C., González, M., López-Macedo, A., García, M.A., Galende, J. & San Miguel, J.F. (1995) Light scatter characteristics of blast cells in acute myeloid leukaemia: association with morphology and immunophenotype. Journal of Clinical Pathology, 48, 456–462.
- Zeijlemaker, W. & Schuurhuis, G.J. (2013) Minimal Residual Disease and Leukemic Stem Cells in Acute Myeloid Leukemia. In: Leukemia, Guenova, M. (Ed.), ISBN: 978-953-51-1127-6, Available from: http://www.intechopen.com/books/leukemia/minimal-residual-disease-and-leukemic-stem-cells-in-acute-myeloid-leukemia
- Zeijlemaker, W., Gratama, J.W. & Schuurhuis, G.J. (2014) Tumor heterogeneity makes AML a ‘moving target’ for detection of residual disease. Cytometry Part B: Clinical Cytometry, 86, 3–14.
- Zeijlemaker, W., Kelder, A., Oussoren-Brockhoff, Y.J.M., Scholten, W.J., Snel, A.N., Veldhuizen, D., Cloos, J., Ossenkoppele, G.J. & Schuurhuis, G.J. (2015a) A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia. doi: 10.1038/leu.2015.252 [Epub ahead of print].
- Zeijlemaker, W., Kelder, A., Wouters, R., Valk, P.J.M., Witte, B.I., Cloos, J., Ossenkoppele, G.J. & Schuurhuis, G.J. (2015b) Absence of leukaemic CD34+ cells in acute myeloid leukaemia is of high prognostic value: a longstanding controversy deciphered. British Journal of Haematology, 171, 227–238.