Prognostic impact of KMT2E transcript levels on outcome of patients with acute promyelocytic leukaemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium on Acute Promyelocytic Leukaemia study
Antonio R. Lucena-Araujo
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Search for more papers by this authorRafael H. Jacomo
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Search for more papers by this authorRosane Bittencourt
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorRicardo Pasquini
Federal University of Paraná, Curitiba, Brazil
Search for more papers by this authorEvandro M. Fagundes
Federal University of Minas Gerais, Belo Horizonte, Brazil
Search for more papers by this authorMaria de Lourdes Chauffaille
Federal University of Sao Paulo, Sao Paulo, Brazil
Search for more papers by this authorCarlos S. Chiattone
Santa Casa Medical School, Sao Paulo, Brazil
Search for more papers by this authorAna S. Lima
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Search for more papers by this authorHau C. Kwaan
Northwestern University Feinberg School of Medicine, Chicago, IL, USA
Search for more papers by this authorRobert Gallagher
Albert Einstein Cancer Center, New York, NY, USA
Search for more papers by this authorCharlotte M. Niemeyer
University Medical Centre, Freiburg, Germany
Search for more papers by this authorMartin S. Tallman
Memorial Sloan-Kettering Cancer Center/Weill Cornell Medical College, New York, NY, USA
Search for more papers by this authorDavid Grimwade
King's College London School of Medicine, London, UK
Search for more papers by this authorRaul C. Ribeiro
St. Jude Children's Research Hospital, Memphis, TN, USA
Search for more papers by this authorFrancesco Lo-Coco
Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
Santa Lucia Foundation, Rome, Italy
Search for more papers by this authorBob Löwenberg
Erasmus University Medical Centre, Rotterdam, The Netherlands
Search for more papers by this authorMiguel A. Sanz
Valencia University Medical School, Valencia, Spain
Search for more papers by this authorCorresponding Author
Eduardo M. Rego
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Correspondence: Eduardo M. Rego, MD, PhD, Medical School of Ribeirão Preto, University of São Paulo. Av. Bandeirantes, 3900, Ribeirao Preto, SP 14048-900, Brazil.
E-mail: [email protected]
Search for more papers by this authorAntonio R. Lucena-Araujo
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Search for more papers by this authorRafael H. Jacomo
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Search for more papers by this authorRosane Bittencourt
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorRicardo Pasquini
Federal University of Paraná, Curitiba, Brazil
Search for more papers by this authorEvandro M. Fagundes
Federal University of Minas Gerais, Belo Horizonte, Brazil
Search for more papers by this authorMaria de Lourdes Chauffaille
Federal University of Sao Paulo, Sao Paulo, Brazil
Search for more papers by this authorCarlos S. Chiattone
Santa Casa Medical School, Sao Paulo, Brazil
Search for more papers by this authorAna S. Lima
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Search for more papers by this authorHau C. Kwaan
Northwestern University Feinberg School of Medicine, Chicago, IL, USA
Search for more papers by this authorRobert Gallagher
Albert Einstein Cancer Center, New York, NY, USA
Search for more papers by this authorCharlotte M. Niemeyer
University Medical Centre, Freiburg, Germany
Search for more papers by this authorMartin S. Tallman
Memorial Sloan-Kettering Cancer Center/Weill Cornell Medical College, New York, NY, USA
Search for more papers by this authorDavid Grimwade
King's College London School of Medicine, London, UK
Search for more papers by this authorRaul C. Ribeiro
St. Jude Children's Research Hospital, Memphis, TN, USA
Search for more papers by this authorFrancesco Lo-Coco
Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
Santa Lucia Foundation, Rome, Italy
Search for more papers by this authorBob Löwenberg
Erasmus University Medical Centre, Rotterdam, The Netherlands
Search for more papers by this authorMiguel A. Sanz
Valencia University Medical School, Valencia, Spain
Search for more papers by this authorCorresponding Author
Eduardo M. Rego
Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
Centre for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
Correspondence: Eduardo M. Rego, MD, PhD, Medical School of Ribeirão Preto, University of São Paulo. Av. Bandeirantes, 3900, Ribeirao Preto, SP 14048-900, Brazil.
E-mail: [email protected]
Search for more papers by this authorSummary
The KMT2E (MLL5) gene encodes a histone methyltransferase implicated in the positive control of genes related to haematopoiesis. Its close relationship with retinoic acid–induced granulopoiesis suggests that the deregulated expression of KMT2E might lead acute promyelocytic leukaemia (APL) blasts to become less susceptible to the conventional treatment protocols. Here, we assessed the impact of KMT2E expression on the prognosis of 121 APL patients treated with ATRA and anthracycline-based chemotherapy. Univariate analysis showed that complete remission (P = 0·006), 2-year overall survival (OS) (P = 0·005) and 2-year disease-free survival (DFS) rates (P = 0·037) were significantly lower in patients with low KMT2E expression; additionally, the 2-year cumulative incidence of relapse was higher in patients with low KMT2E expression (P = 0·04). Multivariate analysis revealed that low KMT2E expression was independently associated with lower remission rate (odds ratio [OR]: 7·18, 95% confidence interval [CI]: 1·71–30·1; P = 0·007) and shorter OS (hazard ratio [HR]: 0·27, 95% CI: 0·08–0·87; P = 0·029). Evaluated as a continuous variable, KMT2E expression retained association with poor remission rate (OR: 10·3, 95% CI: 2·49–43·2; P = 0·001) and shorter survival (HR: 0·17, 95% IC: 0·05–0·53; P = 0·002), while the association with DFS was of marginal significance (HR: 1·01; 95% CI: 0·99–1·02; P = 0·06). In summary, low KMT2E expression may predict poor outcome in APL patients.
Supporting Information
Filename | Description |
---|---|
bjh12921-sup-0001-FigS1-S3-TableS1.docWord document, 2 MB | Data S1. Statistical analysis of the supplementary data. Fig S1. Overall survival in APL patients divided into quartiles (Q) according to KMT2E/ABL1 expression. Fig S2. Receiver operating characteristic (ROC) curve analysis to define the optimal cut-off point for KMT2E expression. Fig S3. Overall survival in APL patients according to age (younger than 50 years vs. older than 50 years). Table SI. Univariable and multivariable Cox analysis for complete remission, overall survival and disease-free survival according to KMT2E transcript levels (categorical variable). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ades, L., Guerci, A., Raffoux, E., Sanz, M., Chevallier, P., Lapusan, S., Recher, C., Thomas, X., Rayon, C., Castaigne, S., Tournilhac, O., de Botton, S., Ifrah, N., Cahn, J.Y., Solary, E., Gardin, C., Fegeux, N., Bordessoule, D., Ferrant, A., Meyer-Monard, S., Vey, N., Dombret, H., Degos, L., Chevret, S. & Fenaux, P. (2010) Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy: the European APL Group experience. Blood, 115, 1690–1696.
- Asou, N., Adachi, K., Tamura, J., Kanamaru, A., Kageyama, S., Hiraoka, A., Omoto, E., Akiyama, H., Tsubaki, K., Saito, K., Kuriyama, K., Oh, H., Kitano, K., Miyawaki, S., Takeyama, K., Yamada, O., Nishikawa, K., Takahashi, M., Matsuda, S., Ohtake, S., Suzushima, H., Emi, N. & Ohno, R. (1998) Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Japan Adult Leukemia Study Group. Journal of Clinical Oncology, 16, 78–85.
- Avvisati, G., Lo-Coco, F., Paoloni, F.P., Petti, M.C., Diverio, D., Vignetti, M., Latagliata, R., Specchia, G., Baccarani, M., Di Bona, E., Fioritoni, G., Marmont, F., Rambaldi, A., Di Raimondo, F., Kropp, M.G., Pizzolo, G., Pogliani, E.M., Rossi, G., Cantore, N., Nobile, F., Gabbas, A., Ferrara, F., Fazi, P., Amadori, S. & Mandelli, F. (2011) AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: very long-term results and role of maintenance. Blood, 117, 4716–4725.
- Barragan, E., Montesinos, P., Camos, M., Gonzalez, M., Calasanz, M.J., Roman-Gomez, J., Gomez-Casares, M.T., Ayala, R., Lopez, J., Fuster, O., Colomer, D., Chillon, C., Larrayoz, M.J., Sanchez-Godoy, P., Gonzalez-Campos, J., Manso, F., Amador, M.L., Vellenga, E., Lowenberg, B. & Sanz, M.A. (2011) Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy. Haematologica, 96, 1470–1477.
- Beitinjaneh, A., Jang, S., Roukoz, H. & Majhail, N.S. (2010) Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leukemia Research, 34, 831–836.
- Damm, F., Oberacker, T., Thol, F., Surdziel, E., Wagner, K., Chaturvedi, A., Morgan, M., Bomm, K., Gohring, G., Lubbert, M., Kanz, L., Fiedler, W., Schlegelberger, B., Heil, G., Schlenk, R.F., Dohner, K., Dohner, H., Krauter, J., Ganser, A. & Heuser, M. (2011) Prognostic importance of histone methyltransferase MLL5 expression in acute myeloid leukemia. Journal of Clinical Oncology, 29, 682–689.
- De Marchis, M.L., Ballarino, M., Salvatori, B., Puzzolo, M.C., Bozzoni, I. & Fatica, A. (2009) A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells. Leukemia, 23, 856–862.
- Emerling, B.M., Bonifas, J., Kratz, C.P., Donovan, S., Taylor, B.R., Green, E.D., Le Beau, M.M. & Shannon, K.M. (2002) MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia. Oncogene, 21, 4849–4854.
- Ernst, P., Fisher, J.K., Avery, W., Wade, S., Foy, D. & Korsmeyer, S.J. (2004) Definitive hematopoiesis requires the mixed-lineage leukemia gene. Developmental Cell, 6, 437–443.
- Falini, B., Flenghi, L., Fagioli, M., Lo, C.F., Cordone, I., Diverio, D., Pasqualucci, L., Biondi, A., Riganelli, D., Orleth, A., Liso, A., Martelli, M.F., Pelicci, P.G. & Pileri, S. (1997) Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood, 90, 4046–4053.
- Ferrara, F., Morabito, F., Martino, B., Specchia, G., Liso, V., Nobile, F., Boccuni, P., Di Noto, R., Pane, F., Annunziata, M., Schiavone, E.M., De, S.M., Guglielmi, C., Del Vecchio, L. & Lo Coco, F. (2000) CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. Journal of Clinical Oncology, 18, 1295–1300.
- Figueroa, M.E., Lugthart, S., Li, Y., Erpelinck-Verschueren, C., Deng, X., Christos, P.J., Schifano, E., Booth, J., van Putten, W., Skrabanek, L., Campagne, F., Mazumdar, M., Greally, J.M., Valk, P.J., Lowenberg, B., Delwel, R. & Melnick, A. (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell, 17, 13–27.
- Gray, R.J. (1998) A class of K-sample tests for comparing the cumulative incidence of a competing risk. The Annals of Statistics, 16, 1140–1154.
- Heuser, M., Yap, D.B., Leung, M., de Algara, T.R., Tafech, A., McKinney, S., Dixon, J., Thresher, R., Colledge, B., Carlton, M., Humphries, R.K. & Aparicio, S.A. (2009) Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood, 113, 1432–1443.
- Hughes, C.M., Rozenblatt-Rosen, O., Milne, T.A., Copeland, T.D., Levine, S.S., Lee, J.C., Hayes, D.N., Shanmugam, K.S., Bhattacharjee, A., Biondi, C.A., Kay, G.F., Hayward, N.K., Hess, J.L. & Meyerson, M. (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Molecular Cell, 13, 587–597.
- Jacomo, R.H., Melo, R.A., Souto, F.R., de Mattos, E.R., de Oliveira, C.T., Fagundes, E.M., Bittencourt, H.N., Bittencourt, R.I., Bortolheiro, T.C., Paton, E.J., Bendlin, R., Ismael, S., Chauffaille, M.L., Silva, D., Pagnano, K.B., Ribeiro, R. & Rego, E.M. (2007) Clinical features and outcomes of 134 Brazilians with acute promyelocytic leukemia who received ATRA and anthracyclines. Haematologica, 92, 1431–1432.
- Jacomo, R.H., Santana-Lemos, B.A., Lima, A.S., Assis, P.A., Lange, A.P., Figueiredo-Pontes, L.L., Oliveira, L.O., Bassi, S.C., Benicio, M.T., Baggio, M.S., Garcia, A.B., Falcao, R.P. & Rego, E.M. (2012) Methionine-induced hyperhomocysteinemia reverts fibrinolytic pathway activation in a murine model of acute promyelocytic leukemia. Blood, 120, 207–213.
- Kwaan, H.C. & Rego, E.M. (2010) Role of microparticles in the hemostatic dysfunction in acute promyelocytic leukemia. Seminars in Thrombosis and Hemostasis, 36, 917–924.
- Le Beau, M.M., Davis, E.M., Patel, B., Phan, V.T., Sohal, J. & Kogan, S.C. (2003) Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood, 102, 1072–1074.
- Lo-Coco, F., Avvisati, G., Vignetti, M., Thiede, C., Orlando, S.M., Iacobelli, S., Ferrara, F., Fazi, P., Cicconi, L., Di Bona, E., Specchia, G., Sica, S., Divona, M., Levis, A., Fiedler, W., Cerqui, E., Breccia, M., Fioritoni, G., Salih, H.R., Cazzola, M., Melillo, L., Carella, A.M., Brandts, C.H., Morra, E., von Lilienfeld-Toal, M., Hertenstein, B., Wattad, M., Lubbert, M., Hanel, M., Schmitz, N., Link, H., Kropp, M.G., Rambaldi, A., La Nasa, G., Luppi, M., Ciceri, F., Finizio, O., Venditti, A., Fabbiano, F., Dohner, K., Sauer, M., Ganser, A., Amadori, S., Mandelli, F., Dohner, H., Ehninger, G., Schlenk, R.F. & Platzbecker, U. (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N.Engl. Journal of Medicine, 369, 111–121.
- Madan, V., Madan, B., Brykczynska, U., Zilbermann, F., Hogeveen, K., Dohner, K., Dohner, H., Weber, O., Blum, C., Rodewald, H.R., Sassone-Corsi, P., Peters, A.H. & Fehling, H.J. (2009) Impaired function of primitive hematopoietic cells in mice lacking the Mixed-Lineage-Leukemia homolog MLL5. Blood, 113, 1444–1454.
- Martens, J.H., Brinkman, A.B., Simmer, F., Francoijs, K.J., Nebbioso, A., Ferrara, F., Altucci, L. & Stunnenberg, H.G. (2010) PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell, 17, 173–185.
- Milne, T.A., Briggs, S.D., Brock, H.W., Martin, M.E., Gibbs, D., Allis, C.D. & Hess, J.L. (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Molecular Cell, 10, 1107–1117.
- Montesinos, P., Rayon, C., Vellenga, E., Brunet, S., Gonzalez, J., Gonzalez, M., Holowiecka, A., Esteve, J., Bergua, J., Gonzalez, J.D., Rivas, C., Tormo, M., Rubio, V., Bueno, J., Manso, F., Milone, G., de la Serna, J., Perez, I., Perez-Encinas, M., Krsnik, I., Ribera, J.M., Escoda, L., Lowenberg, B. & Sanz, M.A. (2011) Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood, 117, 1799–1805.
- Murray, C.K., Estey, E., Paietta, E., Howard, R.S., Edenfield, W.J., Pierce, S., Mann, K.P., Bolan, C. & Byrd, J.C. (1999) CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome? Journal of Clinical Oncology, 17, 293–297.
- Nakamura, T., Mori, T., Tada, S., Krajewski, W., Rozovskaia, T., Wassell, R., Dubois, G., Mazo, A., Croce, C.M. & Canaani, E. (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Molecular Cell, 10, 1119–1128.
- Noguera, N.I., Breccia, M., Divona, M., Diverio, D., Costa, V., De Santis, S., Avvisati, G., Pinazzi, M.B., Petti, M.C., Mandelli, F. & Lo Coco, F. (2002) Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia, 16, 2185–2189.
- Rego, E.M., He, L.Z., Warrell, R.P. Jr, Wang, Z.G. & Pandolfi, P.P. (2000) Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proceedings of the National Academy of Sciences of the United States of America, 97, 10173–10178.
- Rego, E.M., Kim, H.T., Ruiz-Arguelles, G.J., Undurraga, M.S., Uriarte, M.R., Jacomo, R.H., Gutierrez-Aguirre, H., Melo, R.A., Bittencourt, R., Pasquini, R., Pagnano, K., Fagundes, E.M., Chauffaille, M.L., Chiattone, C.S., Martinez, L., Meillon, L.A., Gomez-Almaguer, D., Kwaan, H.C., Garces-Eisele, J., Gallagher, R., Niemeyer, C.M., Schrier, S.L., Tallman, M., Grimwade, D., Ganser, A., Berliner, N., Ribeiro, R.C., Lo-Coco, F., Lowenberg, B. & Sanz, M.A. (2013) Improving acute promyelocytic leukemia (APL) outcome in developing countries through networking, results of the International Consortium on APL. Blood, 121, 1935–1943.
- Sanz, M.A., Lo Coco, F., Martin, G., Avvisati, G., Rayon, C., Barbui, T., Diaz-Mediavilla, J., Fioritoni, G., Gonzalez, J.D., Liso, V., Esteve, J., Ferrara, F., Bolufer, P., Bernasconi, C., Gonzalez, M., Rodeghiero, F., Colomer, D., Petti, M.C., Ribera, J.M. & Mandelli, F. (2000) Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood, 96, 1247–1253.
- Sanz, M.A., Martin, G., Gonzalez, M., Leon, A., Rayon, C., Rivas, C., Colomer, D., Amutio, E., Capote, F.J., Milone, G.A., de la Serna, J., Roman, J., Barragan, E., Bergua, J., Escoda, L., Parody, R., Negri, S., Calasanz, M.J. & Bolufer, P. (2004) Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood, 103, 1237–1243.
- Sanz, M.A., Montesinos, P., Rayon, C., Holowiecka, A., de la Serna, J., Milone, G., de Lisa, E., Brunet, S., Rubio, V., Ribera, J.M., Rivas, C., Krsnik, I., Bergua, J., Gonzalez, J., Diaz-Mediavilla, J., Rojas, R., Manso, F., Ossenkoppele, G., Gonzalez, J.D. & Lowenberg, B. (2010) Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood, 115, 5137–5146.
- Saumet, A., Vetter, G., Bouttier, M., Portales-Casamar, E., Wasserman, W.W., Maurin, T., Mari, B., Barbry, P., Vallar, L., Friederich, E., Arar, K., Cassinat, B., Chomienne, C. & Lecellier, C.H. (2009) Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. Blood, 113, 412–421.
- Schnittger, S., Bacher, U., Haferlach, C., Kern, W., Alpermann, T. & Haferlach, T. (2011) Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica, 96, 1799–1807.
- de la Serna, J., Montesinos, P., Vellenga, E., Rayon, C., Parody, R., Leon, A., Esteve, J., Bergua, J.M., Milone, G., Deben, G., Rivas, C., Gonzalez, M., Tormo, M., Diaz-Mediavilla, J., Gonzalez, J.D., Negri, S., Amutio, E., Brunet, S., Lowenberg, B. & Sanz, M.A. (2008) Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood, 111, 3395–3402.
- Sunter, N.J., Scott, K., Hills, R., Grimwade, D., Taylor, S., Worrillow, L.J., Fordham, S.E., Forster, V.J., Jackson, G., Bomken, S., Jones, G. & Allan, J.M. (2012) A functional variant in the core promoter of the CD95 cell death receptor gene predicts prognosis in acute promyelocytic leukemia. Blood, 119, 196–205.
- de Thé, H., Le Bras, M. & Lallemand-Breitenbach, V. (2012) The cell biology of disease: acute promyelocytic leukemia, arsenic, and PML bodies. Journal of Cell Biology, 198, 11–21.
- Wartman, L.D., Welch, J.S., Uy, G.L., Klco, J.M., Lamprecht, T., Varghese, N., Nagarajan, R. & Ley, T.J. (2012) Expression and function of PML-RARA in the hematopoietic progenitor cells of Ctsg-PML-RARA mice. PLoS One, 7, e46529.
- Welch, J.S., Ley, T.J., Link, D.C., Miller, C.A., Larson, D.E., Koboldt, D.C., Wartman, L.D., Lamprecht, T.L., Liu, F., Xia, J., Kandoth, C., Fulton, R.S., McLellan, M.D., Dooling, D.J., Wallis, J.W., Chen, K., Harris, C.C., Schmidt, H.K., Kalicki-Veizer, J.M., Lu, C., Zhang, Q., Lin, L., O'Laughlin, M.D., McMichael, J.F., Delehaunty, K.D., Fulton, L.A., Magrini, V.J., McGrath, S.D., Demeter, R.T., Vickery, T.L., Hundal, J., Cook, L.L., Swift, G.W., Reed, J.P., Alldredge, P.A., Wylie, T.N., Walker, J.R., Watson, M.A., Heath, S.E., Shannon, W.D., Varghese, N., Nagarajan, R., Payton, J.E., Baty, J.D., Kulkarni, S., Klco, J.M., Tomasson, M.H., Westervelt, P., Walter, M.J., Graubert, T.A., DiPersio, J.F., Ding, L., Mardis, E.R. & Wilson, R.K. (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell, 150, 264–278.
- Zentz, E.L. (1990) Fibrocystic disease and breast cancer. Postgraduate Medicine, 87, 33.
- Zhang, Y., Wong, J., Klinger, M., Tran, M.T., Shannon, K.M. & Killeen, N. (2009) MLL5 contributes to hematopoietic stem cell fitness and homeostasis. Blood, 113, 1455–1463.