Advances in understanding the leukaemia microenvironment
Yoko Tabe
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Department of Clinical Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Marina Konopleva
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Correspondence: Associate Professor Marina Konopleva, Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Unit 428, 1515 Holcombe Blvd., Houston, TX 77030, USA.
E-mail: [email protected]
Search for more papers by this authorYoko Tabe
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Department of Clinical Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Marina Konopleva
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Correspondence: Associate Professor Marina Konopleva, Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Unit 428, 1515 Holcombe Blvd., Houston, TX 77030, USA.
E-mail: [email protected]
Search for more papers by this authorSummary
Dynamic interactions between leukaemic cells and cells of the bone marrow are a feature of haematological malignancies. Two distinct microenvironmental niches in the bone marrow, the ‘osteoblastic (endosteal)’ and ‘vascular’ niches, provide a sanctuary for subpopulations of leukaemic cells to evade chemotherapy-induced death and allow acquisition of drug resistance. Key components of the bone marrow microenvironment as a home for normal haematopoietic stem cells and the leukaemia stem cell niches, and the molecular pathways critical for microenvironment/leukaemia interactions via cytokines, chemokines and adhesion molecules as well as hypoxic conditions, are described in this review. Finally, the genetic abnormalities of leukaemia-associated stroma are discussed. Further understanding of the contribution of the bone marrow niche to the process of leukaemogenesis may provide new targets that allow destruction of leukaemia stem cells without adversely affecting normal stem cell self-renewal.
References
- Adams, G.B., Chabner, K.T., Alley, I.R., Olson, D.P., Szczepiorkowski, Z.M., Poznansky, M.C., Kos, C.H., Pollak, M.R., Brown, E.M. & Scadden, D.T. (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439, 599–603.
- Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y. & Suda, T. (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118, 149–161.
- Avigdor, A., Goichberg, P., Shivtiel, S., Dar, A., Peled, A., Samira, S., Kollet, O., Hershkoviz, R., Alon, R., Hardan, I., Ben-Hur, H., Naor, D., Nagler, A. & Lapidot, T. (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103, 2981–2989.
- Benito, J., Shi, Y., Szymanska, B., Carol, H., Boehm, I., Lu, H., Konoplev, S., Fang, W., Zweidler-McKay, P.A., Campana, D., Borthakur, G., Bueso-Ramos, C., Shpall, E., Thomas, D.A., Jordan, C.T., Kantarjian, H., Wilson, W.R., Lock, R., Andreeff, M. & Konopleva, M. (2011) Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS ONE, 6, e23108.
- Bonig, H. & Papayannopoulou, T. (2013) Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia, 27, 24–31.
- Bonnet, D. & Dick, J.E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.
- Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M. & Scadden, D.T. (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.
- Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Galiano, R.D., Levine, J.P. & Gurtner, G.C. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10, 858–864.
- Chow, A., Lucas, D., Hidalgo, A., Méndez-Ferrer, S., Hashimoto, D., Scheiermann, C., Battista, M., Leboeuf, M., Prophete, C., van Rooijen, N., Tanaka, M., Merad, M. & Frenette, P.S. (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 208, 261–271.
- Christopher, M.J., Liu, F., Hilton, M.J., Long, F. & Link, D.C. (2009) Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood, 114, 1331–1339.
- Colmone, A., Amorim, M., Pontier, A.L., Wang, S., Jablonski, E. & Sipkins, D.A. (2008) Leukemic cells create bone marrow niches that disrupt the behaviour of normal hematopoietic progenitor cells. Science, 322, 1861–1865.
- Crazzolara, R., Kreczy, A., Mann, G., Heitger, A., Eibl, G., Fink, F.M., Mohle, R. & Meister, B. (2001) High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. British Journal of Haematology, 115, 545–553.
- Dias, S., Shmelkov, S.V., Lam, G. & Rafii, S. (2002) VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood, 99, 2532–2540.
- Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481, 457–462.
- Dührsen, U. & Hossfeld, D.K. (1996) Stromal abnormalities in neoplastic bone marrow diseases. Annals of Hematology, 73, 53–70.
- Ferrara, N., Gerber, H.P. & LeCouter, J. (2003) The biology of VEGF and its receptors. Nature Medicine, 9, 669–676.
- Fiegl, M., Samudio, I., Clise-Dwyer, K., Burks, J.K., Mnjoyan, Z. & Andreeff, M. (2009) CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood, 113, 1504–1512.
- Fujisaki, J., Wu, J., Carlson, A.L., Silberstein, L., Putheti, P., Larocca, R., Gao, W., Saito, T.I., Lo Celso, C., Tsuyuzaki, H., Sato, T., Côté, D., Sykes, M., Strom, T.B., Scadden, D.T. & Lin, C.P. (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature, 474, 216–219.
- Garcia-Gila, M., Lopez-Martin, E.M. & Garcia-Pardo, A. (2002) Adhesion to fibronectin via alpha4 integrin (CD49d) protects B cells from apoptosis induced by serum deprivation but not via IgM or Fas/Apo-1 receptors. Clinical & Experimental Immunology, 127, 455–462.
- Hanahan, D. & Coussens, L.M. (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 21, 309–322.
- Harrison, J.S., Rameshwar, P., Chang, V. & Bandari, P. (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood, 99, 394.
- Herrlich, P., Morrison, H., Sleeman, J., Orian-Rousseau, V., Konig, H., Weg-Remers, S. & Ponta, H. (2000) CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Annals of the New York Academy of Sciences, 910, 106–118.
- Hsieh, Y.T., Gang, E.J., Geng, H., Park, E., Huantes, S., Chudziak, D., Dauber, K., Schaefer, P., Scharman, C., Shimada, H., Shojaee, S., Klemm, L., Parameswaran, R., Loh, M., Kang, E.S., Koo, H.H., Hofmann, W.K., Andrade, J., Crooks, G.M., Willman, C.L., Müschen, M., Papayannopoulou, T., Heisterkamp, N., Bönig, H. & Kim, Y.M. (2013) Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy. Blood, 121, 1814–1818.
- Hussong, J.W., Rodgers, G.M. & Shami, P.J. (2000) Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood, 95, 309–313.
- Ishibe, N., Albitar, M., Jilani, I.B., Goldin, L.R., Marti, G.E. & Caporaso, N.E. (2002) CXCR4 expression is associated with survival in familial chronic lymphocytic leukemia, but CD38 expression is not. Blood, 100, 1100–1101.
- Iwamoto, S., Mihara, K., Downing, J.R., Pui, C.H. & Campana, D. (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. The Journal of Clinical Investigation, 117, 1049–1057.
- Iwasaki, H. & Suda, T. (2009) Cancer stem cells and their niche. Cancer Science, 100, 1166–1172.
- Jensen, P.O., Mortensen, B.T., Hodgkiss, R.J., Iversen, P.O., Christensen, I.J., Helledie, N. & Larsen, J.K. (2000) Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Proliferation, 33, 381–395.
- Jin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F. & Dick, J.E. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12, 1167–1174.
- Jin, L., Tabe, Y., Konoplev, S., Xu, Y., Leysath, C.E., Lu, H., Kimura, S., Ohsaka, A., Rios, M.B., Calvert, L., Kantarjian, H., Andreeff, M. & Konopleva, M. (2008) CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Molecular Cancer Therapeutics, 7, 48–58.
- Jinushi, M., Chiba, S., Yoshiyama, H., Masutomi, K., Kinoshita, I., Dosaka-Akita, H., Yagita, H., Takaoka, A. & Tahara, H. (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 12425–12430.
- Jones, D.L. & Wagers, A.J. (2008) No place like home: anatomy and function of the stem cell niche. Nature Reviews Molecular Cell Biology, 9, 11–21.
- Juarez, J., Bradstock, K.F., Gottlieb, D.J. & Bendall, L.J. (2003) Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia, 17, 1294–1300.
- Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A. & Frenette, P.S. (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124, 407–421.
- Kiel, M.J. & Morrison, S.J. (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews Immunology, 8, 290–301.
- Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C. & Morrison, S.J. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.
- Koh, M.Y., Spivak-Kroizman, T., Venturini, S., Welsh, S., Williams, R.R., Kirkpatrick, D.L. & Powis, G. (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Molecular Cancer Therapeutics, 7, 90–100.
- Kollet, O., Dar, A., Shivtiel, S., Kalinkovich, A., Lapid, K., Sztainberg, Y., Tesio, M., Samstein, R.M., Goichberg, P., Spiegel, A., Elson, A. & Lapidot, T. (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Medicine, 12, 657–664.
- Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C.R., Lacey, D.L., Mak, T.W., Boyle, W.J. & Penninger, J.M. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397, 315–323.
- Konoplev, S., Rassidakis, G.Z., Estey, E., Kantarjian, H., Liakou, C.I., Huang, X., Xiao, L., Andreeff, M., Konopleva, M. & Medeiros, L.J. (2007) Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer, 109, 1152–1156.
- Konopleva, M.Y. & Jordan, C.T. (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. Journal of Clinical Oncology, 29, 591–599.
- Koomagi, R., Zintl, F., Sauerbrey, A. & Volm, M. (2001) Vascular endothelial growth factor in newly diagnosed and recurrent childhood acute lymphoblastic leukemia as measured by real-time quantitative polymerase chain reaction. Clinical Cancer Research, 7, 3381–3384.
- Korkolopoulou, P., Apostolidou, E., Pavlopoulos, P.M., Kavantzas, N., Vyniou, N., Thymara, I., Terpos, E., Patsouris, E., Yataganas, X. & Davaris, P. (2001) Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia, 15, 1369–1376.
- Krause, D.S., Lazarides, K., von Andrian, U.H. & Van Etten, R.A. (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nature Medicine, 12, 1175–1180.
- Kuhne, M.R., Mulvey, T., Belanger, B., Chen, S., Pan, C., Chong, C., Cao, F., Niekro, W., Kempe, T., Henning, K.A., Cohen, L.J., Korman, A.J. & Cardarelli, P.M. (2013) BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clinical Cancer Research, 19, 357–366.
- Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., Mar, J.C., Bergman, A. & Frenette, P.S. (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502, 637–643.
- Lane, S.W. (2012) Bad to the bone. Blood, 119, 323–325.
- Li, L. & Neaves, W.B. (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66, 4553–4557.
- Litz, J. & Krystal, G.W. (2006) Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells. Molecular Cancer Therapeutics, 5, 1415–1422.
- Lucas, D., Scheiermann, C., Chow, A., Kunisaki, Y., Bruns, I., Barrick, C., Tessarollo, L. & Frenette, P.S. (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nature Medicine, 19, 695–703.
- Lymperi, S., Ersek, A., Ferraro, F., Dazzi, F. & Horwood, N.J. (2010) Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood, 117, 1540–1549.
- Mansour, A., Abou-Ezzi, G., Sitnicka, E., Jacobsen, S.E., Wakkach, A. & Blin-Wakkach, C. (2012) Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. Journal of Experimental Medicine, 209, 537–549.
- Matsuoka, S., Oike, Y., Onoyama, I., Iwama, A., Arai, F., Takubo, K., Mashimo, Y., Oguro, H., Nitta, E., Ito, K., Miyamoto, K., Yoshiwara, H., Hosokawa, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Hayashi, Y., Matsuzaki, Y., Nakayama, K., Ikeda, Y., Hata, A., Chiba, S., Nakayama, K.I. & Suda, T. (2008) Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes and Development, 22, 986–991.
- Mayerhofer, M., Valent, P., Sperr, W.R., Griffin, J.D. & Sillaber, C. (2002) BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood, 100, 3767–3775.
- Mendez-Ferrer, S., Michurina, T.V., Ferraro, F., Mazloom, A.R., Macarthur, B.D., Lira, S.A., Scadden, D.T., Ma'ayan, A., Enikolopov, G.N. & Frenette, P.S. (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829.
- Messinger, Y., Chelstrom, L., Gunther, R. & Ukmi, F.M. (1996) Selective homing of human leukemic B-cell precursors to specific lymphohematopoietic microenvironments in SCID mice: a role for the beta 1 integrin family surface adhesion molecules VLA-4 and VLA-5. Leukemia and Lymphoma, 23, 61–69.
- Miller, P.G., Al-Shahrour, F., Hartwell, K.A., Chu, L.P., Järås, M., Puram, R.V., Puissant, A., Callahan, K.P., Ashton, J., McConkey, M.E., Poveromo, L.P., Cowley, G.S., Kharas, M.G., Labelle, M., Shterental, S., Fujisaki, J., Silberstein, L., Alexe, G., Al-Hajj, M.A., Shelton, C.A., Armstrong, S.A., Root, D.E., Scadden, D.T., Hynes, R.O., Mukherjee, S., Stegmaier, K., Jordan, C.T. & Ebert, B.L. (2013) In vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell, 24, 45–58.
- Miyake, K., Medina, K., Ishihara, K., Kimoto, M., Auerbach, R. & Kincade, P.W. (1991) A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. Journal of Cell Biology, 114, 557–565.
- Mohle, R., Shittenhelm, M., Faienschmid, C., Bautz, F., Kratz-Albers, K., Serve, H., Brugger, W. & Kanz, L. (2000) Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. British Journal of Haematology, 110, 563–572.
- Mortensen, B.T., Jensen, P.O., Helledie, N., Iversen, P.O., Ralfkiaer, E., Larsen, J.K. & Madsen, M.T. (1998) Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. British Journal of Haematology, 102, 458–464.
- Mudry, R.E., Fortney, J.E., York, T., Hall, B.M. & Gibson, L.F. (2000) Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood, 96, 1926–1932.
- Mussai, F., De Santo, C., Abu-Dayyeh, I., Booth, S., Quek, L., McEwen-Smith, R.M., Qureshi, A., Dazzi, F., Vyas, P. & Cerundolo, V. (2013) Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood, 122, 749–758.
- Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H. & Kishimoto, T. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–638.
- Nagasawa, T., Omatsu, Y. & Sugiyama, T. (2011) Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends in Immunology, 32, 315–320.
- Nervi, B., Ramirez, P., Rettig, M.P., Uy, G.L., Holt, M.S., Ritchey, J.K., Prior, J.L., Piwnica-Worms, D., Bridger, G., Ley, T.J. & DiPersio, J.F. (2009) Chemosensitization of AML following mobilization by the CXCR4 antagonist AMD3100. Blood, 113, 6206–6214.
- Nilsson, S.K., Johnston, H.M., Whitty, G.A., Williams, B., Webb, R.J., Denhardt, D.T., Bertoncello, I., Bendall, L.J., Simmons, P.J. & Haylock, D.N. (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.
- Nombela-Arrieta, C., Pivarnik, G., Winkel, B., Canty, K.J., Harley, B., Mahoney, J.E., Park, S.Y., Lu, J., Protopopov, A. & Silberstein, L.E. (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nature Cell Biology, 15, 533–543.
- Nwajei, F. & Konopleva, M. (2013) The bone marrow microenvironment ironment as niche retreats for hematopoietic and leukemic stem cells. Advances in Hematology, 2013, 953982.
- Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K. & Nagasawa, T. (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity, 33, 387–399.
- Passegue, E., Wagers, A.J., Giuriato, S., Anderson, W.C. & Weissman, I.L. (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. Journal of Experimental Medicine, 202, 1599–1611.
- Peled, A., Hardan, I., Trakhtenbrot, L., Gur, E., Magid, M., Darash-Yahana, M., Cohen, N., Grabovsky, V., Franitza, S., Kollet, O., Lider, O., Alon, R., Rechavi, G. & Lapidot, T. (2002) Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells, 20, 259–266.
- Perry, J.M. & Li, L. (2007) Disrupting the stem cell niche: good seeds in bad soil. Cell, 129, 1045–1047.
- Prowse, A.B., Chong, F., Gray, P.P. & Munro, T.P. (2011) Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Research, 6, 1–12.
- Qiang, Y.W., Chen, Y., Stephens, O., Brown, N., Chen, B., Epstein, J., Barlogie, B. & Shaughnessy, J.D. Jr (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood, 112, 196–207.
- Raaijmakers, M.H., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J.A., Ebert, B.L., Al-Shahrour, F., Hasserjian, R.P., Scadden, E.O., Aung, Z., Matza, M., Merkenschlager, M., Lin, C., Rommens, J.M. & Scadden, D.T. (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464, 852–857.
- Rajkumar, S.V., Leong, T., Roche, P.C., Fonseca, R., Dispenzieri, A., Lacy, M.Q., Lust, J.A., Witzig, T.E., Kyle, R.A., Gertz, M.A. & Greipp, P.R. (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clinical Cancer Research, 6, 3111–3116.
- Redondo-Munoz, J., Ugarte-Berzal, E., Garcia-Marco, J.A., del Cerro, M.H., Van den Steen, P.E., Opdenakker, G., Terol, M.J. & Garcia-Pardo, A. (2008) Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood, 112, 169–178.
- Rombouts, E.J., Pavic, B., Löwenberg, B. & Ploemacher, R.E. (2004) Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood, 104, 550–557.
- Rupec, R.A., Jundt, F., Rebholz, B., Eckelt, B., Weindl, G., Herzinger, T., Flaig, M.J., Moosmann, S., Plewig, G., Dörken, B., Förster, I., Huss, R. & Pfeffer, K. (2005) Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity, 22, 479–491.
- Sackstein, R. (2011) The biology of CD44 and HCELL in hematopoiesis: the ‘step 2-bypass pathway’ and other emerging perspectives. Current Opinion in Hematology, 18, 239–248.
- Sands, W.A., Copland, M. & Wheadon, H. (2013) Targeting self-renewal pathways in myeloid malignancies. Cell Communication and Signaling, 11, 33.
- Schepers, K., Pietras, E.M., Reynaud, D., Flach, J., Binnewies, M., Garg, T., Wagers, A.J., Hsiao, E.C. & Passegué, E. (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell, 13, 285–299.
- Schofield, R. (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.
- Schroder, H.C., Wang, X.H., Wiens, M., Diehl-Seifert, B., Kropf, K., Schloßmacher, U. & Müller, W.E. (2012) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. Journal of Cellular Biochemistry, 113, 3197–3206.
- Shen, W., Bendall, L.J., Gottlieb, D.J. & Bradstock, K.F. (2001) The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Experimental Hematology, 29, 1439–1447.
- Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E.J. & Krek, W. (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425, 307–311.
- Suda, T., Takubo, K. & Semenza, G.L. (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9, 298–310.
- Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. (2006) Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.
- Tabe, Y., Jin, L., Iwabuchi, K., Wang, R.Y., Ichikawa, N., Miida, T., Cortes, J., Andreeff, M. & Konopleva, M. (2012) Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia, 26, 883–892.
- Tabe, Y., Shi, Y.X., Zeng, Z., Jin, L., Shikami, M., Hatanaka, Y., Miida, T., Hsu, F.J., Andreeff, M. & Konopleva, M. (2013) TGF-β-neutralizing antibody 1D11 enhances cytarabine-induced apoptosis in AML cells in the bone marrow microenvironment. PLoS ONE, 8, e62785.
- Tavor, S. & Petit, I. (2010) Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia? Seminars in Cancer Biology, 20, 178–185.
- Walkley, C.R., Shea, J.M., Sims, N.A., Purton, L.E. & Orkin, S.H. (2007a) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell, 129, 1081–1095.
- Walkley, C.R., Olsen, G.H., Dworkin, S., Fabb, S.A., Swann, J., McArthur, G.A., Westmoreland, S.V., Chambon, P., Scadden, D.T. & Purton, L.E. (2007b) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell, 129, 1097–1110.
- Wang, Y., Krivtsov, A.V., Sinha, A.U., North, T.E., Goessling, W., Feng, Z., Zon, L.I. & Armstrong, S.A. (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science, 327, 1650–1653.
- Warner, J.K., Wang, J.C., Hope, K.J., Jin, L. & Dick, J.E. (2004) Concepts of human leukemic development. Oncogene, 23, 7164–7177.
- Wellmann, S., Guschmann, M., Griethe, W., Eckert, C., von Stackelberg, A., Lottaz, C., Moderegger, E. & Seeger, K. (2004) Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia, 18, 926–933.
- Williams, K., Motiani, K., Giridhar, P.V. & Kasper, S. (2013) CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Experimental Biology and Medicine (Maywood), 238, 324–338.
- Yamazaki, S., Ema, H., Karlsson, G., Yamaguchi, T., Miyoshi, H., Shioda, S., Taketo, M.M., Karlsson, S., Iwama, A. & Nakauchi, H. (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell, 147, 1146–1158.
- Yilmaz, O.H., Valdez, R., Theisen, B.K., Guo, W., Ferguson, D.O., Wu, H. & Morrison, S.J. (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441, 475–482.
- Zeng, Z., Samudio, I.J., Munsell, M., An, J., Huang, Z., Estey, E., Andreeff, M. & Konopleva, M. (2006) Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Molecular Cancer Therapeutics, 5, 3113–3121.
- Zeng, Z., Shi, Y.X., Samudio, I.J., Wang, R.Y., Ling, X., Frolova, O., Levis, M., Rubin, J.B., Negrin, R.R., Estey, E.H., Konoplev, S., Andreeff, M. & Konopleva, M. (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood, 113, 6215–6224.
- Zhang, W., Trachootham, D., Liu, J., Chen, G., Pelicano, H., Garcia-Prieto, C., Lu, W., Burger, J.A., Croce, C.M., Plunkett, W., Keating, M.J. & Huang, P. (2012) Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nature Cell Biology, 14, 276–286.
- Zhang, B., Li, M., McDonald, T., Holyoake, T.L., Moon, R.T., Campana, D., Shultz, L. & Bhatia, R. (2013) Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-β-catenin signaling. Blood, 121, 1824–1938.
- Zhao, C., Blum, J., Chen, A., Kwon, H.Y., Jung, S.H., Cook, J.M., Lagoo, A. & Reya, T. (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 12, 528–541.