Successful isolation and expansion of CMV-reactive T cells from G-CSF mobilized donors that retain a strong cytotoxic effector function
Edward R. Samuel
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
Search for more papers by this authorKaty Newton
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
Cell Medica Ltd, London, UK
Search for more papers by this authorStephen Mackinnon
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
Search for more papers by this authorCorresponding Author
Mark W. Lowdell
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
The Royal Free London NHS Foundation Trust, London, UK
Correspondence: Mark W. Lowdell, Department of Haematology, University College London Medical School, University College London, London NW3 2PF, UK.
E-mail: [email protected]
Search for more papers by this authorEdward R. Samuel
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
Search for more papers by this authorKaty Newton
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
Cell Medica Ltd, London, UK
Search for more papers by this authorStephen Mackinnon
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
Search for more papers by this authorCorresponding Author
Mark W. Lowdell
Department of Haematology, University CollegeLondon Medical School, University College London, London, UK
The Royal Free London NHS Foundation Trust, London, UK
Correspondence: Mark W. Lowdell, Department of Haematology, University College London Medical School, University College London, London NW3 2PF, UK.
E-mail: [email protected]
Search for more papers by this authorSummary
Cytomegalovirus (CMV) infections post-haematopoietic stem cell transplantation (HSCT) can be effectively controlled through the adoptive transfer of donor-derived CMV-specific T cells (CMV-T). Current strategies involve a second leukapheresis collection from the original donor to manufacture CMV-T, which is often not possible in the unrelated donor setting. To overcome these limitations we have investigated the use of a small aliquot of the original granulocyte-colony stimulating factor (G-CSF) mobilized HSCT graft to manufacture CMV-T. We explored the T cell response to CMVpp65 peptide stimulation in G-CSF mobilized peripheral blood mononuclear cells (PBMC) and subsequently examined isolation of CMV-T based on the activation markers CD154 and CD25. CD25+ enriched CMV-T from G-CSF mobilized PBMC contained a higher proportion of FoxP3 expression than non-mobilized PBMC and showed superior suppression of T cell proliferation. Expanded CMV-T enriched through CD154 were CD4+ and CD8+, demonstrated a high specificity for CMV, secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. These data provide the first known evidence that CMV-T can be effectively manufactured from G-CSF mobilized PBMC and that they share the same characteristics as CMV-T isolated in an identical manner from conventional non-mobilized PBMC. This provides a novel strategy for adoptive immunotherapy that abrogates the need for successive donation.
References
- Appay, V., Zaunders, J.J., Papagno, L., Sutton, J., Jaramillo, A., Waters, A., Easterbrook, P., Grey, P., Smith, D., McMichael, A.J., Cooper, D.A., Rowland-Jones, S.L. & Kelleher, A.D. (2002) Characterization of CD4+ CTLs ex vivo. The Journal of Immunology, 168, 5954–5958.
- Arpinati, M., Green, C.L., Heimfeld, S., Heuser, J.E. & Anasetti, C. (2000) Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood, 95, 2484–2490.
- Brines, R.D. & Klaus, G.G. (1993) Polyclonal activation of immature B cells by preactivated T cells: the role of IL-4 and CD40 ligand. International Immunology, 5, 1445–1450.
- Chakrabarti, S., Mackinnon, S., Chopra, R., Kottaridis, P.D., Peggs, K., O'Gorman, P., Chakraverty, R., Marshall, T., Osman, H., Mahendra, P., Craddock, C., Waldmann, H., Hale, G., Fegan, C.D., Yong, K., Goldstone, A.H., Linch, D.C. & Milligan, D.W. (2002) High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood, 99, 4357–4363.
- Chattopadhyay, P.K., Yu, J. & Roederer, M. (2005) A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nature Medicine, 11, 1113–1117.
- Cobbold, M., Khan, N., Pourgheysari, B., Tauro, S., McDonald, D., Osman, H., Assenmacher, M., Billingham, L., Steward, C., Crawley, C., Olavarria, E., Goldman, J., Chakraverty, R., Mahendra, P., Craddock, C. & Moss, P.A. (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. Journal of Experimental Medicine, 202, 379–386.
- Einsele, H., Ehninger, G., Hebart, H., Wittkowski, K.M., Schuler, U., Jahn, G., Mackes, P., Herter, M., Klingebiel, T., Loffler, J., Wagner, S. & Muller, C.A. (1995) Polymerase chain reaction monitoring reduces the incidence of cytomegalovirus disease and the duration and side effects of antiviral therapy after bone marrow transplantation. Blood, 86, 2815–2820.
- Einsele, H., Roosnek, E., Rufer, N., Sinzger, C., Riegler, S., Loffler, J., Grigoleit, U., Moris, A., Rammensee, H.G., Kanz, L., Kleihauer, A., Frank, F., Jahn, G. & Hebart, H. (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood, 99, 3916–3922.
- Frentsch, M., Arbach, O., Kirchhoff, D., Moewes, B., Worm, M., Rothe, M., Scheffold, A. & Thiel, A. (2005) Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nature Medicine, 11, 1118–1124.
- Gallot, G., Vivien, R., Ibisch, C., Lule, J., Davrinche, C., Gaschet, J. & Vie, H. (2001) Purification of Ag-specific T lymphocytes after direct peripheral blood mononuclear cell stimulation followed by CD25 selection. I. Application to CD4+ or CD8+ cytomegalovirus phosphoprotein pp65 epitope determination. The Journal of Immunology, 167, 4196–4206.
- Goodrich, J.M., Bowden, R.A., Fisher, L., Keller, C., Schoch, G. & Meyers, J.D. (1993) Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Annals of Internal Medicine, 118, 173–178.
- Gooley, T.A., Chien, J.W., Pergam, S.A., Hingorani, S., Sorror, M.L., Boeckh, M., Martin, P.J., Sandmaier, B.M., Marr, K.A., Appelbaum, F.R., Storb, R. & McDonald, G.B. (2010) Reduced mortality after allogeneic hematopoietic-cell transplantation. New England Journal of Medicine, 363, 2091–2101.
- Gratama, J.W., Brooimans, R.A., van der Holt, B., Sintnicolaas, K., van Doornum, G., Niesters, H.G., Lowenberg, B. & Cornelissen, J.J. (2008) Monitoring cytomegalovirus IE-1 and pp65-specific CD4+ and CD8+ T-cell responses after allogeneic stem cell transplantation may identify patients at risk for recurrent CMV reactivations. Cytometry Part B: Clinical Cytometry, 74, 211–220.
- Hartung, T., Doecke, W.D., Bundschuh, D., Foote, M.A., Gantner, F., Hermann, C., Lenz, A., Milwee, S., Rich, B., Simon, B., Volk, H.D., von Aulock, S. & Wendel, A. (1999) Effect of filgrastim treatment on inflammatory cytokines and lymphocyte functions. Clinical Pharmacology and Therapeutics, 66, 415–424.
- Khanna, N., Stuehler, C., Conrad, B., Lurati, S., Krappmann, S., Einsele, H., Berges, C. & Topp, M.S. (2011) Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD154. Blood, 118, 1121–1131.
- Leen, A.M., Myers, G.D., Sili, U., Huls, M.H., Weiss, H., Leung, K.S., Carrum, G., Krance, R.A., Chang, C.C., Molldrem, J.J., Gee, A.P., Brenner, M.K., Heslop, H.E., Rooney, C.M. & Bollard, C.M. (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine, 12, 1160–1166.
- Levine, J.E., Braun, T., Penza, S.L., Beatty, P., Cornetta, K., Martino, R., Drobyski, W.R., Barrett, A.J., Porter, D.L., Giralt, S., Leis, J., Holmes, H.E., Johnson, M., Horowitz, M. & Collins, Jr, R.H. (2002) Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. Journal of Clinical Oncology, 20, 405–412.
- Lugthart, G., Albon, S.J., Ricciardelli, I., Kester, M.G., Meij, P., Lankester, A.C. & Amrolia, P.J. (2012) Simultaneous generation of multivirus-specific and regulatory T cells for adoptive immunotherapy. Journal of Immunotherapy, 35, 42–53.
- Mackinnon, S., Thomson, K., Verfuerth, S., Peggs, K. & Lowdell, M. (2008) Adoptive cellular therapy for cytomegalovirus infection following allogeneic stem cell transplantation using virus-specific T cells. Blood Cells, Molecules, and Diseases, 40, 63–67.
- Micklethwaite, K., Hansen, A., Foster, A., Snape, E., Antonenas, V., Sartor, M., Shaw, P., Bradstock, K. & Gottlieb, D. (2007) Ex vivo expansion and prophylactic infusion of CMV-pp65 peptide-specific cytotoxic T-lymphocytes following allogeneic hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 13, 707–714.
- Morris, E.S., MacDonald, K.P., Rowe, V., Johnson, D.H., Banovic, T., Clouston, A.D. & Hill, G.R. (2004) Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood, 103, 3573–3581.
- Neri, S., Mariani, E., Meneghetti, A., Cattini, L. & Facchini, A. (2001) Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clinical Diagnostic Laboratory Immunology, 8, 1131–1135.
- Otto, M., Barfield, R.C., Iyengar, R., Gatewood, J., Muller, I., Holladay, M.S., Houston, J., Leung, W. & Handgretinger, R. (2005) Human gammadelta T cells from G-CSF-mobilized donors retain strong tumoricidal activity and produce immunomodulatory cytokines after clinical-scale isolation. Journal of Immunotherapy, 28, 73–78.
- Pan, L., Teshima, T., Hill, G.R., Bungard, D., Brinson, Y.S., Reddy, V.S., Cooke, K.R. & Ferrara, J.L. (1999) Granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation maintains graft-versus-leukemia effects through a perforin-dependent pathway while preventing graft-versus-host disease. Blood, 93, 4071–4078.
- Peggs, K.S. (2009) Adoptive T cell immunotherapy for cytomegalovirus. Expert Opinion on Biological Therapy, 9, 725–736.
- Peggs, K.S., Verfuerth, S., Pizzey, A., Khan, N., Guiver, M., Moss, P.A. & Mackinnon, S. (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet, 362, 1375–1377.
- Peggs, K.S., Thomson, K., Samuel, E., Dyer, G., Armoogum, J., Chakraverty, R., Pang, K., Mackinnon, S. & Lowdell, M.W. (2011) Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clinical Infectious Diseases, 52, 49–57.
- Perruccio, K., Tosti, A., Burchielli, E., Topini, F., Ruggeri, L., Carotti, A., Capanni, M., Urbani, E., Mancusi, A., Aversa, F., Martelli, M.F., Romani, L. & Velardi, A. (2005) Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood, 106, 4397–4406.
- Powell, D.J., Parker, L.L. & Rosenberg, S.A. (2005) Large-scale depletion of CD25+ regulatory T cells from patient leukapheresis samples. Journal of Immunotherapy, 28, 403–411.
- Reusser, P., Riddell, S.R., Meyers, J.D. & Greenberg, P.D. (1991) Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood, 78, 1373–1380.
- Riddell, S.R., Watanabe, K.S., Goodrich, J.M., Li, C.R., Agha, M.E. & Greenberg, P.D. (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science, 257, 238–241.
- Rutella, S., Rumi, C., Testa, U., Sica, S., Teofili, L., Martucci, R., Peschle, C. & Leone, G. (1997) Inhibition of lymphocyte blastogenic response in healthy donors treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF): possible role of lactoferrin and interleukin-1 receptor antagonist. Bone Marrow Transplantation, 20, 355–364.
- Sica, S., Rutella, S., Di, M.A., Salutari, P., Rumi, C., Ortu la, B.E., Etuk, B., Menichella, G., D'Onofrio, G. & Leone, G. (1996) rhG-CSF in healthy donors: mobilization of peripheral hemopoietic progenitors and effect on peripheral blood leukocytes. Journal of Hematotherapy, 5, 391–397.
- Slezak, S.L., Bettinotti, M., Selleri, S., Adams, S., Marincola, F.M. & Stroncek, D.F. (2007) CMV pp65 and IE-1 T cell epitopes recognized by healthy subjects. Journal of Translational Medicine, 5, 17.
- Tayebi, H., Kuttler, F., Saas, P., Lienard, A., Petracca, B., Lapierre, V., Ferrand, C., Fest, T., Cahn, J., Blaise, D., Kuentz, M., Herve, P., Tiberghien, P. & Robinet, E. (2001) Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells. Experimental Hematology, 29, 458–470.
- Walter, E.A., Greenberg, P.D., Gilbert, M.J., Finch, R.J., Watanabe, K.S., Thomas, E.D. & Riddell, S.R. (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. New England Journal of Medicine, 333, 1038–1044.
- Watanabe, K., Suzuki, S., Kamei, M., Toji, S., Kawase, T., Takahashi, T., Kuzushima, K. & Akatsuka, Y. (2008) CD137-guided isolation and expansion of antigen-specific CD8 cells for potential use in adoptive immunotherapy. International Journal of Hematology, 88, 311–320.
- Wehler, T.C., Karg, M., Distler, E., Konur, A., Nonn, M., Meyer, R.G., Huber, C., Hartwig, U.F. & Herr, W. (2008) Rapid identification and sorting of viable virus-reactive CD4+ and CD8+ T cells based on antigen-triggered CD137 expression. Journal of Immunological Methods, 339, 23–37.
- Wolfl, M., Kuball, J., Ho, W.Y., Nguyen, H., Manley, T.J., Bleakley, M. & Greenberg, P.D. (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 110, 201–210.
- Zandvliet, M.L., Falkenburg, J.H., Jedema, I., Willemze, R., Guchelaar, H.J. & Meij, P. (2009) Detailed analysis of IFNg response upon activation permits efficient isolation of cytomegalovirus-specific CD8+ T cells for adoptive immunotherapy. Journal of Immunotherapy, 32, 513–523.
- Zandvliet, M.L., van, L.E., Jedema, I., Veltrop-Duits, L.A., Willemze, R., Guchelaar, H.J., Falkenburg, J.H. & Meij, P. (2010) Co-ordinated isolation of CD8+ and CD4+ T cells recognizing a broad repertoire of cytomegalovirus pp65 and IE1 epitopes for highly specific adoptive immunotherapy. Cytotherapy, 12, 933–944.