Aflatoxin B1 induces ROS-dependent mitophagy by modulating the PINK1/Parkin pathway in HepG2 cells
Yuxi Wang
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorLan Long
Deyang Center for Disease Control and Prevention, Deyang, China
Search for more papers by this authorQian Luo
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorXinyi Huang
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorYing Zhang
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorCorresponding Author
Xiao Meng
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Correspondence
Xiao Meng and Dayi Chen, Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Dayi Chen
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Correspondence
Xiao Meng and Dayi Chen, Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorYuxi Wang
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorLan Long
Deyang Center for Disease Control and Prevention, Deyang, China
Search for more papers by this authorQian Luo
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorXinyi Huang
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorYing Zhang
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Search for more papers by this authorCorresponding Author
Xiao Meng
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Correspondence
Xiao Meng and Dayi Chen, Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Dayi Chen
Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Correspondence
Xiao Meng and Dayi Chen, Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorYuxi Wang and Lan Long contributed equally to the article.
Funding information: This research received no external funding. This is a self-selected topic.
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to both humans and animals. Mitophagy is a selective process of self-elimination and has an important role in controlling mitochondrial quality. The present study aimed to investigate the effect of reactive oxygen species (ROS) accumulation on AFB1-induced mitophagy in HepG2 cells to provide a new perspective from which to design novel therapeutic strategies to treat AFB1 poisoning. ROS release was induced in HepG2 cells with AFB1 (10 μmol/L). Cell autophagy activity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, Parkin translocation and both the transcription and expression of mitophagy-related proteins were measured when N-acetyl-L-cysteine (NAC) partially decreased the ROS level, while the knockdown of nuclear factor erythroid 2-related factor 2 (Nrf2) resulted in a large accumulation of ROS. The results reveal that NAC pretreatment ameliorated the decline in both the MMP and the ATP levels while also activating phosphoglycerate mutase 5 (PGAM5)-PTEN-induced kinase 1 (PINK1)/Parkin, while the Nrf2 knockdown group exhibited the opposite trend. These results suggest that AFB1-induced mitophagy in HepG2 cells depends on ROS, and proper ROS activates mitophagy to play a protective role.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.
REFERENCES
- 1Luo SJ, Du HL, Kebede H, Liu Y, Xing FG. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control. 2021; 127:108120. doi:10.1016/j.foodcont.2021.108120
- 2Ostry V, Malir F, Toman J, Grosse Y. Mycotoxins as human carcinogens-the IARC monographs classification. Mycotoxin Res. 2017; 33(1): 65-73. doi:10.1007/s12550-016-0265-7
- 3Eskola M, Kos G, Elliott CT, Hajslova J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25. Crit Rev Food Sci Nutr. 2020; 60(16): 2773-2789. doi:10.1080/10408398.2019.1658570
- 4Kutasi K, Recek N, Zaplotnik R, et al. Approaches to inactivating aflatoxins—a review and challenges. Int J Mol Sci. 2021; 22(24):13322. doi:10.3390/ijms222413322
- 5Wogan GN, Kensler TW, Groopman JD. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit Contam Part a Chem Anal Control Expo Risk Assess. 2012; 29(2): 249-257. doi:10.1080/19440049.2011.563370
- 6 IARC. Chemical agents and related occupations: a review of human carcinogens. Accessed 20 November 2022. https://publications.iarc.fr/123
- 7Ferreira RG, Cardoso MV, de Souza Furtado KM, Espindola KMM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res. 2019; 204: 51-71. doi:10.1016/j.trsl.2018.09.001
- 8Ismail A, Goncalves BL, de Neeff DV, et al. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int. 2018; 113: 74-85. doi:10.1016/j.foodres.2018.06.067
- 9Chaytor AC, See MT, Hansen JA, de Souza AL, Middleton TF, Kim SW. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J Anim Sci. 2011; 89(1): 124-135. doi:10.2527/jas.2010-3005
- 10Mohammadi A, Mehrzad J, Mahmoudi M, Schneider M. Environmentally relevant level of aflatoxin B1 dysregulates human dendritic cells through signaling on key toll-like receptors. Int J Toxicol. 2014; 33(3): 175-186. doi:10.1177/1091581814526890
- 11Deng J, Zhao L, Zhang NY, et al. Aflatoxin B(1) metabolism: regulation by phase I and II metabolizing enzymes and chemoprotective agents. Mutat Res Rev Mutat Res. 2018; 778: 79-89. doi:10.1016/j.mrrev.2018.10.002
- 12Liu Y, Wang W. Aflatoxin B1 impairs mitochondrial functions, activates ROS generation, induces apoptosis and involves Nrf2 signal pathway in primary broiler hepatocytes. Anim Sci J. 2016; 87(12): 1490-1500. doi:10.1111/asj.12550
- 13Long L, Meng X, Sun JY, Jing L, Chen DY, Yu R. Ameliorated effect of Lactobacillus plantarum SCS2 on the oxidative stress in HepG2 cells induced by AFB1. Food Sci Tech-Brazil. 2022; 42:e16522. doi:10.1590/fst.16522
- 14Xu F, Li Y, Cao Z, Zhang J, Huang W. AFB(1)-induced mice liver injury involves mitochondrial dysfunction mediated by mitochondrial biogenesis inhibition. Ecotoxicol Environ Saf. 2021; 216:112213. doi:10.1016/j.ecoenv.2021.112213
- 15Li S, Muhammad I, Yu H, Sun X, Zhang X. Detection of aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. Ecotoxicol Environ Saf. 2019; 176: 137-145. doi:10.1016/j.ecoenv.2019.03.089
- 16Rotimi OA, Rotimi SO, Goodrich JM, Adelani IB, Agbonihale E, Talabi G. Time-course effects of acute aflatoxin B1 exposure on hepatic mitochondrial lipids and oxidative stress in rats. Front Pharmacol. 2019; 10: 467. doi:10.3389/fphar.2019.00467
- 17Paul S, Jakhar R, Bhardwaj M, Kang SC. Glutathione-S-transferase omega 1 (GSTO1-1) acts as mediator of signaling pathways involved in aflatoxin B1-induced apoptosis-autophagy crosstalk in macrophages. Free Radic Biol Med. 2015; 89: 1218-1230. doi:10.1016/j.freeradbiomed.2015.11.006
- 18Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010; 8(1):e1000298. doi:10.1371/journal.pbio.1000298
- 19Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013; 20(1): 31-42. doi:10.1038/cdd.2012.81
- 20Yan C, Gong L, Chen L, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020; 16(3): 419-434. doi:10.1080/15548627.2019.1628520
- 21An Y, Shi X, Tang X, et al. Aflatoxin B1 induces reactive oxygen species-mediated autophagy and extracellular trap formation in macrophages. Front Cell Infect Microbiol. 2017; 7: 53. doi:10.3389/fcimb.2017.00053
- 22Shi D, Guo S, Liao S, et al. Protection of selenium on hepatic mitochondrial respiratory control ratio and respiratory chain complex activities in ducklings intoxicated with aflatoxin B(1). Biol Trace Elem Res. 2012; 145(3): 312-317. doi:10.1007/s12011-011-9195-6
- 23Chen F, Feng L, Zheng YL, et al. 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment. Environ Pollut. 2020; 258:113693. doi:10.1016/j.envpol.2019.113693
- 24Tai Y, Pu M, Yuan L, et al. miR-34a-5p regulates PINK1-mediated mitophagy via multiple modes. Life Sci. 2021; 276:119415. doi:10.1016/j.lfs.2021.119415
- 25Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT 2023 policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2023; 133(4): 391-396. doi:10.1111/bcpt.13944
- 26Qiu YN, Wang GH, Zhou F, et al. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol Environ Saf. 2019; 167: 178-187. doi:10.1016/j.ecoenv.2018.08.050
- 27Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013; 496(7445): 372-376. doi:10.1038/nature12043
- 28Tanaka K. The PINK1-Parkin axis: an overview. Neurosci Res. 2020; 159: 9-15. doi:10.1016/j.neures.2020.01.006
- 29Wu NN, Zhang Y, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxid Med Cell Longev. 2019; 2019:9825061. doi:10.1155/2019/9825061
- 30Chen X, Che C, Korolchuk VI, Gan F, Pan C, Huang K. Selenomethionine alleviates AFB1-induced damage in primary chicken hepatocytes by inhibiting CYP450 1A5 expression via upregulated SelW expression. J Agric Food Chem. 2017; 65(12): 2495-2502. doi:10.1021/acs.jafc.6b05308
- 31Tang C, Han H, Yan M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy. 2018; 14(5): 880-897. doi:10.1080/15548627.2017.1405880
- 32Lin Q, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019; 26:101254. doi:10.1016/j.redox.2019.101254
- 33Li R, Chen J. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Oxid Med Cell Longev. 2019; 2019:9341018. doi:10.1155/2019/9341018
- 34Wen S, Wang L, Wang T, et al. Puerarin alleviates cadmium-induced mitochondrial mass decrease by inhibiting PINK1-Parkin and Nix-mediated mitophagy in rat cortical neurons. Ecotoxicol Environ Saf. 2021; 230:113127. doi:10.1016/j.ecoenv.2021.113127
- 35Wu X, Gong L, Xie L, et al. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-Parkin pathway of mitophagy in a murine model of sleep apnea. Front Immunol. 2021; 12:628168. doi:10.3389/fimmu.2021.628168
- 36Huang D, Peng Y, Li Z, et al. Compression-induced senescence of nucleus pulposus cells by promoting mitophagy activation via the PINK1/PARKIN pathway. J Cell Mol Med. 2020; 24(10): 5850-5864. doi:10.1111/jcmm.15256
- 37Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012; 441(2): 523-540. doi:10.1042/BJ20111451
- 38Morales CR, Pedrozo Z, Lavandero S, Hill JA. Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid Redox Signal. 2014; 20(3): 507-518. doi:10.1089/ars.2013.5359
- 39Rajput SA, Zhang C, Feng Y, et al. Proanthocyanidins alleviates aflatoxinB(1)-induced oxidative stress and apoptosis through mitochondrial pathway in the bursa of fabricius of broilers. Toxins (Basel). 2019; 11(3):157. doi:10.3390/toxins11030157
- 40Wang Q, Jia F, Guo C, et al. PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB(1)-induced liver injury in mice. Food Chem Toxicol. 2022; 164:113043. doi:10.1016/j.fct.2022.113043
- 41Ren XL, Han P, Meng Y. Aflatoxin B1-induced COX-2 expression promotes mitophagy and contributes to lipid accumulation in hepatocytes in vitro and in vivo. Int J Toxicol. 2020; 39(6): 594-604. doi:10.1177/1091581820939081
- 42Vos M, Geens A, Bohm C, et al. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J Cell Biol. 2017; 216(3): 695-708. doi:10.1083/jcb.201511044
- 43Kim KY, Stevens MV, Akter MH, et al. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest. 2011; 121(9): 3701-3712. doi:10.1172/Jci44736
- 44Wang Y, Song M, Wang Q, et al. PINK1/Parkin-mediated mitophagy is activated to protect against AFB(1)-induced kidney damage in mice. Chem Biol Interact. 2022; 358:109884. doi:10.1016/j.cbi.2022.109884
- 45Zhang Y, Xi X, Mei Y, et al. High-glucose induces retinal pigment epithelium mitochondrial pathways of apoptosis and inhibits mitophagy by regulating ROS/PINK1/Parkin signal pathway. Biomed Pharmacother. 2019; 111: 1315-1325. doi:10.1016/j.biopha.2019.01.034
- 46Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015; 88(Pt B): 179-188. doi:10.1016/j.freeradbiomed.2015.04.036
- 47Holmstrom KM, Baird L, Zhang Y, et al. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open. 2013; 2(8): 761-770. doi:10.1242/bio.20134853
- 48Zeb A, Choubey V, Gupta R, et al. A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy. Redox Biol. 2021; 48:102186. doi:10.1016/j.redox.2021.102186
- 49Bayne AN, Trempe JF. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell Mol Life Sci. 2019; 76(23): 4589-4611. doi:10.1007/s00018-019-03203-4
- 50Park YS, Choi SE, Koh HC. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction. Toxicol Lett. 2018; 284: 120-128. doi:10.1016/j.toxlet.2017.12.004
- 51Sekine S, Kanamaru Y, Koike M, et al. Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem. 2012; 287(41): 34635-34645. doi:10.1074/jbc.M112.357509
- 52Lu W, Karuppagounder SS, Springer DA, et al. Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat Commun. 2014; 5(1): 4930. doi:10.1038/ncomms5930
- 53Zeb A, Choubey V, Gupta R, Veksler V, Kaasik A. Negative feedback system to maintain cell ROS homeostasis: KEAP1-PGAM5 complex senses mitochondrially generated ROS to induce mitophagy. Autophagy. 2022; 18(9): 2249-2251. doi:10.1080/15548627.2021.2024702
- 54O'Mealey GB, Plafker KS, Berry WL, Janknecht R, Chan JY, Plafker SM. A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci. 2017; 130(20): 3467-3480. doi:10.1242/jcs.203216
- 55Guo C, Liu Y, Wang Y, et al. PINK1/Parkin-mediated mitophagy is activated to protect against AFB(1)-induced immunosuppression in mice spleen. Toxicol Lett. 2022; 366: 33-44. doi:10.1016/j.toxlet.2022.07.001